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ABSTRACT

The increasing density and smaller length scales in integrated circuits (ICs) create

resolution challenges for optical failure analysis techniques. Due to flip-chip bonding

and dense metal layers on the front side, optical analysis of ICs is restricted to backside

imaging through the silicon substrate, which limits the spatial resolution due to the

minimum wavelength of transmission and refraction at the planar interface. The state-

of-the-art backside analysis approach is to use aplanatic solid immersion lenses in

order to achieve the highest possible numerical aperture of the imaging system. Signal

processing algorithms are essential to complement the optical microscopy efforts to

increase resolution through hardware modifications in order to meet the resolution

requirements of new IC technologies.

The focus of this thesis is the development of sparsity-based image reconstruction
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techniques to improve resolution of static IC images and dynamic optical measure-

ments of device activity. A physics-based observation model is exploited in order to

take advantage of polarization diversity in high numerical aperture systems. Multiple-

polarization observation data are combined to produce a single enhanced image with

higher resolution. In the static IC image case, two sparsity paradigms are considered.

The first approach, referred to as analysis-based sparsity, creates enhanced resolution

imagery by solving a linear inverse problem while enforcing sparsity through non-

quadratic regularization functionals appropriate to IC features. The second approach,

termed synthesis-based sparsity, is based on sparse representations with respect to

overcomplete dictionaries. The domain of IC imaging is particularly suitable for the

application of overcomplete dictionaries because the images are highly structured;

they contain predictable building blocks derivable from the corresponding computer-

aided design layouts. This structure provides a strong and natural a-priori dictionary

for image reconstruction. In the dynamic case, an extension of the synthesis-based

sparsity paradigm is formulated. Spatial regions of active areas with the same behav-

ior over time or over frequency are coupled by an overcomplete dictionary consisting

of space-time or space-frequency blocks. This extended dictionary enables resolution

improvement through sparse representation of dynamic measurements. Additionally,

extensions to darkfield subsurface microscopy of ICs and focus determination based

on image stacks are provided. The resolution improvement ability of the proposed

methods has been validated on both simulated and experimental data.
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Chapter 1

Introduction

Integrated circuit (IC) failure analysis (FA) is the investigation of failure mechanisms

during manufacturing process of semiconductor devices. This analysis is crucial to

increase the fabrication yield and thus the profit of IC industry. Therefore, it is

essential for FA methods to meet the quality requirements in semiconductor device

manufacturing. Optical FA is an example of non-invasive fault analysis where optical

images of static IC components or dynamic optical measurements of device activity

are obtained. Optical techniques for defect detection are limited to backside analysis

methods through the silicon substrate because opaque metal interconnect layers and

flip-chip bonding obscure the front (Goldstein et al., 1993; Serrels et al., 2008). The

rapid decrease in dimensions of IC features necessitates the use of higher resolution

optical FA techniques. The highest resolution in backside optical FA was achieved by

using applanatic solid immersion lenses (aSILs) thanks to their high numerical aper-

ture (NA) capabilities (Ippolito et al., 2001; Serrels et al., 2008; Köklü et al., 2009).

The optical microscopy efforts for increasing resolution of backside optical FA systems

continue through hardware modifications, such as the use of radially polarized light

for illumination (Yurt et al., 2014a) and the use of apodizaion masks (Vigil et al.,

2014), but they are not enough to meet the requirements of new ICs with smaller

and denser components. Therefore, there is a need for model-based signal processing

approaches to increase resolution. This thesis focuses on the development of sparse

reconstruction methods to increase resolution of optical images of static IC compo-
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nents and dynamic optical measurements of device activity. Fig. 1·1 (Liao et al.,

2010) shows examples of optical FA data. The gray scale image of static IC compo-

nents is overlaid with the optical measurement of device activity shown in yellow and

green. Yellow corresponds to operation at data frequency and green corresponds to

operation at clock frequency. Fig. 1·1a shows data from a properly functioning device

whereas Fig. 1·1b shows data from a faulty device where faulty regions are marked.

The optical measurements of device activity have higher intensities around the faulty

regions.

(a) (b)

Figure 1·1: Optical measurements of (a) a properly-functioning die
and (b) a faulty die

In high NA systems, properties of focused light near dielectric interfaces cannot

be explained by scalar optics theory thus requiring full vectorial analysis of fields

(Richards and Wolf, 1959; Köklü et al., 2009). One such property is that spatial

resolution improvement in selected directions can be obtained by changing the polar-

ization direction of linearly polarized illumination (Köklü et al., 2009; Serrels et al.,

2008). For an arbitrarily-shaped material object, the response of the high NA system

is nonlinear and the modeling of such a system requires vectorial analysis where light
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is treated as an electromagnetic field (Török et al., 2008; Chen et al., 2012).

1.1 Contributions

The first contribution of this thesis is the development of approximate linear time-

invariant (LTI) point spread functions (PSF) that is appropriate for high-NA optical

systems. The goal is to use the PSF in a linear inverse problem formulation to increase

the resolution of the optical FA data. We propose a PSF model which accounts for

the change in system response for different material objects and their different sizes,

and which respects the underlying physics.

The second contribution of this thesis is a novel analysis-based sparsifying image

reconstruction framework which benefits from polarization diversity of high NA opti-

cal systems. In an analysis-based sparsity paradigm an analysis operator is applied to

the underlying signal and the sparsity is enforced on the analysis coefficients (Chen

et al., 2001; Cetin et al., 2014). When linearly polarized light is used, altering the

polarization direction enables the collection of optical images with varying spatial

resolution in different directions. A single image with higher resolution can be ob-

tained through an image reconstruction framework which combines a set of images

taken with linearly polarized light in various polarization directions. Additionally,

this framework benefits from prior knowledge about features in ICs by incorporat-

ing non-quadratic regularization functionals in the image reconstruction framework.

These non-quadratic regularization functionals enforce the sharpness of edges in the

reconstructed image and enable the recovery of small scatterers. A non-quadratic

regularization for resolution improvement in optical systems has been proposed in

(Gazit et al., 2009) but it has not been used for high NA optical systems where we

can benefit from polarization diversity.

The third contribution of this thesis is a synthesis-based sparsity paradigm using
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overcomplete dictionaries for IC imaging. In a synthesis-based sparsity paradigm,

the underlying signal is represented by an overcomplete dictionary and the sparsity

is imposed on the representation coefficients (Chen et al., 2001; Cetin et al., 2014).

The domain of IC imaging is particularly suitable for the application of overcomplete

dictionaries in an image reconstruction framework because the images are highly

structured, containing predictable building blocks derivable from the corresponding

computer-aided design (CAD) layouts. This structure provides a strong and natural

a-priori dictionary for scene reconstruction.

The fourth contribution of this thesis is the use of space-time and space-frequency

dictionaries for dynamic imaging. These methods are an extension of 2D dictionary

representation to 3D. Space-time or space-frequency dictionaries are used to represent

optical measurements of device activity. Laser voltage imaging (LVI) is an optical FA

technique which produces images of active regions operating at a specific frequency.

We propose a framework where amplitude and phase images at multiple frequencies

can be collected and combined through space-time or space-frequency dictionary-

based sparse representation in order to obtain high-resolution images of device ac-

tivity. The proposed 3D dictionaries couple the spatial regions of active areas with

same signature over time or over frequency through space-time or space-frequency

dictionary elements.

The fifth contribution of this thesis is a new focus determination method for high-

NA subsurface imaging. The shape and support of the spot created by the focused

laser light in high-NA systems change when the focus is varied in longitudinal direction

near a dielectric interface (Koklu and Unlu, 2009). The proposed focus determination

method uses this property to determine the focus point of the focus stack and find

the best focus.
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1.2 Thesis organization

In Chapter 2, we first review linear inversion problems and different regularization

approaches for linear inversion problems. We also present a review of backside optical

FA methods, aSIL microscopy and the optical model of aSIL microscopy. Mathemati-

cal expressions for different components of aSIL microscopy are given in Section 2.3.2.

In Chapter 3, a PSF model is developed to be used in linear inverse problems

where the nonlinear optical system is approximated by a linear convolution with the

developed PSF. The PSF model accounts for the vectorial properties of high NA

systems as well as the dependence of the system response to the material and the size

of the object.

In Chapter 4, we present an analysis-based sparse image reconstruction framework

using non-quadratic regularization functionals. This framework benefits from polar-

ization diversity of high-NA systems and provides image enhancement and resolution

improvement for images obtained using such systems.

In Chapter 5, we introduce an overcomplete dictionary-based sparse scene repre-

sentation for IC images and formulate a synthesis-based sparse reconstruction frame-

work to improve resolution of IC images.

In Chapter 6, we extend the dictionary-based representation to space-time and

space-frequency in order to apply the synthesis-based sparse reconstruction framework

to optical measurements of device activity.

In Chapter 7, an application of the proposed reconstruction framework to dark-

field subsurface imaging microscopy is presented. Additionally, a method in order

to estimate the PSF of the darkfield subsurface imaging microscopy system from

observation data is proposed.

In Chapter 8, a focus determination method for high NA subsurface imaging is

proposed.
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Finally, Chaper 9 includes summary and conclusions of this thesis and gives point-

ers for future research directions.
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Chapter 2

Background

2.1 Linear inverse problems and regularization

In this dissertation, inversion techniques are used to provide resolution improvement

for IC fault detection. This section provides background information on inversion

methods. Conventional inversion techniques and their shortcomings are described in

order to motivate advanced inversion methods.

A linear inverse problem (Karl, 2000; Demoment, 1989) can be defined as the

problem of finding an estimate f̂ of an unknown underlying object f from perturbed

observations g given a linear observation model H. The observation model can be

formulated as follows:

g = Hf + w, (2.1)

where w is the measurement noise. The three main difficulties in such a problem are

non-uniqueness of the solution, non-existence of a solution and the ill-conditionedness

of the observation matrix H. The solution is not unique when the nullspace of H

is not empty. If a solution does not exist, g does not lie in the range space of H.

When H is ill-conditioned, small perturbations in g might cause drastic changes in

the estimate of f .

A solution to the problem in (2.1) can be found through least-squares:

f̂ls = arg min
f
‖ Hf − g ‖22, (2.2)
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where ‖ . ‖2 denotes the l2 norm. The least-squares solution satisfies the normal

equations:

HTH f̂ls = HTg. (2.3)

The solution found this way, called generalized solution, is the minimum norm

solution. The minimum norm solution solves problems resulting from non existence

and non uniqueness of a solution. However, if H is ill-conditioned, small perturbations

in g can still result in drastic changes in a generalized solution. This instability can

be solved through regularization. Another benefit of regularization is that it enables

incorporation of prior information about the unknown object f into the problem

formulation. Hence, the solution will both satisfy the observations and the a priori

features.

2.1.1 Tikhonov Regularization

Tikhonov regularization (Tikhonov, 1963), one of the most common regularization

methods, addresses the ill-conditionedness by augmenting the least-squares cost func-

tion with a regularization term, for example:

f̂tik = arg min
f
‖ Hf − g ‖22 +λ ‖ Lf ‖22, (2.4)

where λ is the regularization parameter, L is a matrix. The matrix L can be an iden-

tity matrix giving preference to solutions with smaller norms or it can be a highpass

operator enforcing smoothness if the underlying object f is mostly continuous. The

regularization parameter λ adjusts the trade-off between the regularization term and

the first term called the data fidelity term. In other words, it adjusts how much prior

information will be enforced and how much the solution will fit to the observations.
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Tikhonov solution of (2.4) satisfies the following normal equations:

(HTH + λLTL)̂ftik = HTg. (2.5)

2.1.2 Non-quadratic regularization

The non-quadratic regularization is an example of analysis-based sparsity approach.

The regularization term in Tikhonov regularization is quadratic in f , and leads to

normal equations which are linear in f . Therefore, it has a straightforward and com-

putationally efficient solution which only requires linear processing. However, it has

limitations in the type of features it can recover in f . Mainly, Tikhonov regularization

is limited in recovering the high frequency components in f . Nonetheless, if we use

non-quadratic regularization terms, we could incorporate prior information which will

allow recovery of high frequency information (Karl, 2000). A non-quadratic regular-

ization problem has the following form:

f̂ = arg min
f
‖ Hf − g ‖22 +λJreg(f), (2.6)

where Jreg(f) is the non-quadratic regularization term. Examples of non-quadratic

regularization include total variation regularization and `p-norm regularization with

0 < p ≤ 1.

Total variation regularization helps preserving edges in the estimated f and results

in piecewise constant regions (Ring, 2000; Vogel and Oman, 1998). The regularization

term for total variation is given by:

Jreg(f) = ‖ Df ‖1, (2.7)

where D is a gradient operator. This edge preserving behavior can be explained by the

sparsity-enforcing property of the `p-norm with 0 < p ≤ 1. By enforcing sparsity of

the gradient, it enforces sparsity of the edges and this results in piecewise continuous
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regions.

`p−norm regularization choose Jreg as follows:

Jreg(f) = ‖ f ‖pp, (2.8)

One of the characteristics of this non-quadratic regularizer is that it does not penalize

large values in the estimated f as much as the standard quadratic `2 penalty does

(Karl, 2000). This behavior can be seen in Fig. 2·1, where values of ‖ f ‖pp are plotted

for p = {0.5, 1, 2}. This shows that when ‖ f ‖pp is a regularization term in a mini-

mization problem, large values of f are penalized less when p gets smaller. Donoho

et. al.(Donoho et al., 1992) show that `p−norms do not penalize large amplitudes

as much and they force the amplitudes in the estimate of f below certain thresh-

old to zero. Therefore, they enforce sparse solutions with concentrated energy. This

behavior helps recovering strong small scatterers and high-frequency information.
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Figure 2·1: Behavior of lp−norm for p = 0.5, 1, 2

One approach in non-quadratic regularization is to use combinations of `p regular-

ization functionals combining total variation regularization term with `p−regularization

term which enhances small scatterers:

f̂ = arg min
f
‖ Hf − g ‖22 +λ1‖ Df ‖pp + λ2‖ f ‖pp, (2.9)
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where λ1 and λ2 are regularization parameters. The second term in Eq. 2.9 favors

sparsity in the edge field of the reconstructed image and the third term favors the

sparsity in the reconstructed image. This type of regularization, which enforces both

piecewise continuous regions with sharp edges and point-like small scatterers, has been

successfully applied to synthetic aperture radar imaging (Çetin and Karl, 2001) and

to ultrasound imaging (Tuysuzoglu et al., 2012). In Chapter 4, we propose an image

reconstruction framework for IC imaging which is based on this type of non-quadratic

regularization.

2.1.3 Dictionary-based sparse regularization

The dictionary-based sparse regularization is an example of synthesis-based sparsity

approach. If the underlying image is not sparse in data acquisition domain but it

can be sparsely represented in another domain, an overcomplete dictionary-based

representation can be used to sparsely represent the underlying image:

f = Φη, (2.10)

where Φ is the appropriate overcomplete dictionary and η is the vector of represen-

tation coefficients. Then, the dictionary-based sparse regularization problem can be

expressed as follows:

η̂ = arg min
η
J(η) = ‖ HΦη − g ‖22 + λ ‖ η ‖pp . (2.11)

Sparse signal representation based on overcomplete dictionaries is a well-studied

topic in the image reconstruction literature. However, the way the overcomplete

dictionaries are built differs according to the application domain. One approach is

to use a set of training images in order to learn the overcomplete dictionary and

then an image reconstruction framework is formulated where the underlying image is
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represented as a sparse linear combination of the elements of the learned dictionary

(Aharon et al., 2006; Elad and Aharon, 2006; Donoho et al., 2006). In another ap-

proach, a predetermined overcomplete dictionary can be built to sparsely represent the

scene being imaged, such as a wavelet-based dictionary (Starck et al., 2005; Donoho

and Johnstone, 1994), a point- and region-based dictionary or a shape-based dictio-

nary (Samadi et al., 2009). In Chapter 5, we propose a predetermined overcomplete

dictionary-based image reconstruction framework for IC imaging. The predetermined

dictionary that we are using in Chapter 5 is an adaptation of shape- and region-based

dictionary approach that exploits the structure of ICs and prior information about

their dimensions.

2.2 Backside optical fault analysis techniques

Gordon E. Moore predicted the rapid decrease in IC dimensions (Moore, 1998) and

this decrease continues as predicted. The miniaturization of ICs happens in stages

because new dimensions require new design rules, changing the fabrication techniques

and necessitating modifications in the manufacturing plants. These new stages are

referred to as new process nodes. New potential failure reasons appear with new

fabrication techniques requiring advanced failure analysis (FA) methods. FA is the

technical field of inspecting the failure mechanisms during the manufacturing process

of semiconductor devices. The success of this field affects the fabrication yield which

is the proportion of operational circuits to the total number of fabricated circuits.

Therefore, since the profit of the IC industry heavily depends on yield, it is critical

that FA techniques meet the standards required by new process nodes.

FA techniques can be classified into following categories: electrical test, opti-

cal imaging/analysis, physical techniques, electron beam imaging/analysis, ion beam

techniques, scanning probe techniques. Electrical tests are used to detect faults in
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an IC and an effective test circuit design can narrow down the fault area. The other

techniques are used to find and localize the defect. Examples of physical techniques

are mechanical or ion beam cutting, layer removal and deprocessing to expose deeper

layers of an IC and cross sectioning to view a slice of an IC (Soden and Anderson,

1993). The issue with these techniques is that they cannot be used to analyze ICs

while they are active. Examples of techniques which were used to measure waveforms

from the front side are electrical beam probing and e-beam probing. However, due

to the increase in density of opaque metal interconnect layers and due to flip-chip

bonding in ICs, access to internal nodes from the front-side became limited (Gold-

stein et al., 1993). Therefore, backside analysis techniques have been developed to

measure waveforms of devices through the silicon substrate. Examples of backside

optical fault analysis techniques are optical-beam-induced resistance change (Nikawa

et al., 1999), thermally-induced voltage alteration (TIVA) (Cole and Soden, 1994),

optical-beam-induced current imaging (OBIC) (Xu and Denk, 1999), laser voltage

probing (LVP) (Kolachina, 2011), laser voltage imaging (Ng et al., 2010) and photon

emission microscopy (PEM) (Chim, 2000). Besides FA through electrical, thermal

and photo remission response data, it is also very critical to acquire high-resolution

optical images of ICs taken from the backside because these reflection images are

required for the lateral registration of fault analysis data to the circuit layout. In this

dissertation, we focus on resolution improvement and image enhancement of these

reflection images as well as resolution improvement and timing behavior analysis of

LVI data. In the following subsections, we review LVP and LVI FA techniques.

2.2.1 Laser voltage probing

Laser Volate Probing (LVP) is a backside optical measurement technique of device

activity at a specific location on the ICs. LVP measurements are time-domain mea-

surements of the modulation in the operating device. LVP was first developed as a
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(a) (b) (c)

Figure 2·2: Cross sectional diagram of a MOSFET (a) off-state,
(b)linear operating regime , (c)saturation regime.

noninvasive probing technique by Henrich et. al. (Heinrich et al., 1986). Kindereit

et. al. quantitatively investigated laser beam modulation in electrically-active de-

vices and explained the origin of the modulation in the laser beam reflected from the

active device (Kindereit et al., 2008; Kindereit et al., 2007; Kindereit, 2009). Fig. 2·2

shows a cross-sectional diagram of a metal-oxide-semiconductor field-effect transistor

(MOSFET) in the off-state, the linear operating regime and the saturation regime.

When the transistor is driven with a pulse, it is switching between these states. If

the input is fast enough, the time in which the transistor operates in the saturation

regime is very short. In the linear operating and the saturation regimes, there are ex-

tra layers called inversion layer and depletion region. These layers are formed because

the free carrier densities are changed as a result of the applied voltage. This change in

free carrier densities causes a change in the refractive index n and in the absorption

coefficient α, modeled by the following equations (Soref and Bennett, 1987; Bruce

et al., 1999)

∆n = − λ2q2

8π2c20ε0n0

[
∆Ne

me

+
∆Nh

mh

]
(2.12)

∆α =
λ2q3

4π2c30ε0n0

[
∆Ne

m2
eµe

+
∆Nh

m2
hµh

]
(2.13)

where ∆n and ∆α are changes in refractive index and absorption coefficient, n0 is

the index of un-doped silicon, q is the electron charge, λ is the wavelength, ε0 is the

permittivity of free space, c0 is the speed of light in vacuum, µ is the mobility, m is
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the effective mass and ∆N is the change in charge carrier densities.

When a laser is focused on one specific position in these regions while the tran-

sistor is switching, there is a change in the reflected light because of the change

in refractive index and in absorption coefficient. Therefore, when the transistor is

driven by a rectangular pulse, we observe a modulation in the reflected light cor-

related with the voltage change in the rectangular pulse. LVP is a technique to

measure these modulations. Fig. 2·3, adapted from (Kindereit et al., 2008), shows

the setup for collecting LVP measurements. The laser is focused on the device under

test (DUT). The laser beam reflected from the active device (R(x, y, t)) is converted

to electrical signal (Rn(x, y, t)) by a detector. The reflected light can be expressed

as R(x, y, t) = R0(x, y) + ∆R(x, y, t), where R0(x, y) is the reflection from the static

parts and ∆R(x, y, t) is the modulating part of the reflected light coming from the

active regions. LVP measurements (LV P (x, y, t)) are time domain measurements of

the RF part of the signal which are observed by an oscilloscope.

Figure 2·3: Experimental configuration for LVP and LVI measure-
ments
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2.2.2 Laser voltage imaging

One main problem for LVP measurements is the noise level. The change ∆R is

very small, 600 parts per million, compared to R0 and the variance of the noise is

correlated with the amplitude of R. Therefore, the modulation can only be observed

after averaging multiple times making the LVP measurements time consuming, taking

a few minutes per waveform. Therefore, another measurement technique, called Laser

Voltage Imaging (LVI) has been developed (Ng et al., 2010).

F (x, y, w) = ‖FT{Rn(x, y, t)}‖,

LV I(x, y) = F (x, y, wc),

LSM(x, y) = F (x, y, 0),

(2.14)

where FT{.} denotes fourier transform (FT), wc is the operating frequency of the

device which is driven by a periodic rectangular pulse, LV I(x, y), is the LVI mea-

surement. Thus, LVI measurement records the amplitude and the phase at a specific

frequency in the frequency domain. Since the noise is distributed across all frequen-

cies, it is filtered when only looking at single frequency enabling faster data acquisition

for LVI than for LVP. Therefore, the laser can be raster-scanned in order to produce

amplitude modulation images. Additionally, the DC part of the signal obtained at

the detector is also recorded for each (x, y) location producing an aligned optical im-

age of the device, LSM(x, y). It is also possible to use lock-in amplifiers instead of

a spectrum analyzer in order to record the phase data to produce amplitude phase

maps (Yurt et al., 2012). Examples of LSM data, amplitude modulation image and

amplitude phase map are shown in Fig. 2·4. These measurements are taken from an

active inverter chain in a 32nm process node technology device.
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(a) (b) (c)

Figure 2·4: Data collected from an active inverter chain (a) LSM
image and LVI image: (b) amplitude modulation image (c) amplitude
phase map

2.3 Applanatic solid immersion lens microscopy for integrated

circuit imaging and its optical model

Back-side fault isolation and failure analysis through the silicon substrate became

more significant for optical inspection of ICs with increasing component density and

use of metal interconnect layers (Serrels et al., 2008). In order to overcome resolution

limitations of imaging through the silicon substrate, aplanatic solid immersion lenses

(aSILs) with effective numerical apertures (NA) approaching the index of the sub-

strate (NA ' 3.5) are required (Köklü et al., 2009). In this dissertation, the focus of

the resolution improvement techniques is on the optical fault analysis devices which

use aSILs. In this section, necessary background on aSIL microscopy of ICs and how

such an optical system can be modeled are presented.

2.3.1 Applanatic solid immersion lenses for integrated circuit imaging

The fundamental diffraction limit that defines the lateral spatial resolution in optical

microscopy is the Abbe limit (Abbe, 1873). It is given by: λ0
2NA

, where λ0 is the

free-space wavelength of light and NA is the numerical aperture defined as NA =
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n sin θmax in terms of refractive index n of the medium and collection angle θmax.

The collection angle is the maximum angle of light collected from the structures of

interest. Based on the Abbe limit, there are two ways of improving the resolution of

an optical system. The first is increasing the NA of the optical system and the second

is decreasing the wavelength of the light source. When imaging through silicon, there

is a limit for decreasing the wavelength, because silicon is an absorptive medium for

a range of wavelengths. The bandgap of silicon limits the light that can be used for

imaging to wavelengths larger than 1µm. Therefore, an applanatic solid immersion

lens (aSIL) has been used as a method of increasing the resolution of the IC imaging

system (Ippolito et al., 2001) by increasing NA. The aSIL replaces the surrounding

medium. Therefore, new surrounding medium has a higher refractive index and the

NA of the optical system can be increased.

An immersion technique can be used to increase the NA of the optical system if

the structures that are imaged are located on a surface as in Fig. 2·5(a). When an

immersion technique is employed, the structures of interest are either immersed in a

liquid medium, as in Fig. 2·5(b) or in a solid medium as in Fig. 2·5(c). The main

structures of interest in an IC are the transistors and they are fabricated right on the

silicon surface at the interface between silicon and silicon dioxide. Other structures

of interest are metal interconnects; they are fabricated in the silicon dioxide medium.

There may be up to 10 layers of metal interconnects in modern ICs and their depths

depend on which metal layer they correspond to. Therefore, we need immersion

techniques for subsurface imaging. When the structures that are imaged are buried

in a solid, it is not trivial to maximize the NA of the system because the collection

angle is limited. This can be seen in Fig. 2·5(d). An aSIL, shown in Fig. 2·5(e)

has been used to increase resolution of the optical systems for backside subsurface

imaging of ICs by increasing the NA of the system to NAaSIL = n2NAobj (Ippolito
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et al., 2001). NAobj is the NA of the objective and n is the refractive index of the

immersion medium.

(a) (c) (d)(b) (e)

Figure 2·5: Light focusing in (a) a conventional-surface optical mi-
croscope, (b) a liquid-immersion lens microscope, (c) a solid-immersion
lens microscope, (d) a subsurface microscope and (e) an applanatic
solid-immersion (aSIL) lens microscope.

The aSIL microscopy became the state of the art technique for backside optical

analysis of ICs since it provides the highest NA and best resolution. It has been

shown in (Richards and Wolf, 1959) that when linearly-polarized light is focused with

a high-NA lens, the focal-plane intensity distribution is highly asymmetric. Using

this asymmetry property, spatial resolution improvement in selected directions has

been shown through the use of linearly-polarized light in aSIL backside IC imaging

(Serrels et al., 2008; Köklü et al., 2009). When linearly-polarized light is used, al-

tering the polarization direction enables the collection of optical images with varying

spatial resolution in different directions. One of the contributions of this thesis is

a novel image reconstruction algorithm that produces a single image, with improved

resolution, from on a set of images taken with linearly-polarized light in various polar-

ization directions. Further improvement of spatial resolution in aSIL IC imaging has

been shown through the use of radially polarized light for illumination (Yurt et al.,

2014a) and the use of apodization masks (Vigil et al., 2014).
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2.3.2 Optical model for confocal applanatic solid immersion lens mi-

croscopy of integrated circuits

In high-NA optical systems, the properties of focused polarized light and the prop-

erties of the observed images cannot be explained using scalar optics; a full vectorial

analysis of fields is needed (Richards and Wolf, 1959; Török et al., 2008; Foreman and

Török, 2011; Chen et al., 2012). In this section, we review vectorial analysis tech-

niques required to model different components of high-NA optical systems. Later in

this dissertation, these techniques are used to model a point spread function (PSF) for

the aSIL confocal microscope used in IC analysis experiments. This PSF is incorpo-

rated into the proposed advanced inversion techniques in order to provide resolution

improvement and image enhancement to the IC analysis data.

The imaging model of a high-NA system has three main components. The first

component is the calculation of the focused light near the object of interest, the second

component is the calculation of the scattered light ,which is the interaction between

the focused light and the object of interest. The final component is the far-field

propagation of the scattered light to the image plane. There are different approaches

in the literature which studies these different components. An expression for focused

light when the object of interest is in a layered media is given in (Török et al., 2008).

The focused light for an aSIL microscope is derived in (Chen et al., 2012). In order to

calculate the scattered light, we need an electromagnetic analysis of fields and for that

we need solutions for Maxwell’s equations. However, there are analytical solutions

for Maxwell equations for only a small set of objects. Therefore, we need rigorous

numerical methods, such as the Finite Difference Time Domain (FDTD) method (Yee,

1966), the Finite Element Method (FEM) (Jin, 2014), or the Method of Moments

(MOM) (Pocklington, 1897) in order to calculate the scattered field for an arbitrary

shaped object. There are two main methods proposed in the literature to propagate
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the scattered light to the far-field. The first method was proposed especially for

layered media and is based on decomposing an arbitrary field into a superposition of

magnetic-dipole waves (Munro and Török, 2007). The second method uses a Green’s

function formulation in order to calculate the far field propagation of the scattered

field. In (Hu et al., 2011), a Green’s function of an aSIL microscope for imaging

structures buried inside a medium is presented. However, structures of interest in

ICs, such as gates, metal layers, are located near the interface of the silicon substrate

and the oxide layer. The Green’s function in (Hu et al., 2011) is extended in (Yurt

et al., 2014b) in order to image structures near an interface in an aSIL microscope.

In this dissertation, we use the Green’s function approach for far-field propagation.

The electric field at the detector plane of an aSIL microscope can be expressed as:

Edet =
←→
G aSIL(r, θaSIL, φ) ∗ Escat(r, θaSIL, φ) + ERef (r, θaSIL, φ), (2.15)

where Edet is the field at the detector plane,
←→
G aSIL is the Green’s function for aSIL

for imaging structures at an interface, Escat is the scattered field calculated with

numerical analysis, ERef is the reflected field from the interface, θaSIL, φ and r are

the polar coordinates with respect to aSIL. Then, the confocal image of the object can

be calculated by integrating the intensity, which is the magnitude of the electric field,

at the detector at each scan position.In order to calculate the reflected field, ERef ,

and the focused field, Efoc, used in calculation of the scattered field, a mathematical

technique called angular spectrum representation (ASR) (Novotny and Hecht, 2006)

is required. In the following subsections, we will first give necessary background

on ASR. Then, we will review the focused field, the reflected field and the Green’s

function for aSIL microscopes.
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Angular spectrum representation

Angular spectrum representation (ASR) is a mathematical method to calculate the

propagation and the focusing of optical fields in homogeneous media (Novotny and

Hecht, 2006). It is very useful for describing laser beam propagation and light focus-

ing. Given an electric field E(r) at any point r = (x, y, z) in space, ASR can be used

to represent the field on a plane at constant z as a superposition of plane waves and

evanescent waves. This representation is given in the following equation:

E(x, y, z) =

+∞∫∫
−∞

Ê(kx, ky; 0)ei[kxx+kyy±kzz] dkx dky, (2.16)

where kx, ky, kz are the spatial frequencies. For a certain spatial frequency pair

(kx, ky), the plane wave and evanescent wave components are as follows:

Plane waves: ei[kxx+kyy]e±i|kz |z, k2x + k2y ≤ k2 (2.17)

Evanescent waves: ei[kxx+kyy]e−|kz ||z|, k2x + k2y > k2. (2.18)

The plane wave components are oscillating functions in z and the evanescent waves

have an exponential decay along the z−axis. In the following subsections, ASR is

used to calculate focused fields at the object plane and detector plane.

Focused field in aSIL microscopes

In this section, the focusing of a paraxial optical field by an aplanatic lens is studied.

The refraction of a ray at an aplanatic lens can be explained by two rules; the sine

condition and the intensity law. The focusing in an aplanatic system is shown in

Fig. 2·6 which is adapted from representation of the aplanatic system in (Chen et al.,

2012). The sine law defines the Gaussian reference sphere (GRS) as the sphere with

radius equal to focal length f , where the incident rays parallel to the optical axis
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Figure 2·6: Focusing on an interface in an aSIL microscope

refract. Unit vectors for s− and p− polarized fields in the medium before the objective

lens are denoted by ŝ0 and p̂0. They can be expressed in spherical and cartesian

coordinates as follows:

ŝ0 = −φ̂ = sinφx̂− cosφŷ, (2.19)

p̂0 = ρ̂ = cosφx̂ + sinφŷ. (2.20)

The total electric field after refracting at GRS can be expressed as:

E∞ = [tsobj[Einc.ŝ0]ŝobj + tpobj[Einc.p̂0]p̂obj]

√
n0

nobj

√
cos θobj, (2.21)

where Einc is the incident electric field and ŝobj and p̂obj denote unit vectors for s−

and p− polarized fields in the medium after the objective lens. They can be expressed

as:

ŝobj = −φ̂ = sinφx̂− cosφŷ, (2.22)

p̂obj = −θ̂1 = −cosθ1cosφx̂− cosθ1sinφŷ + sinθ1ẑ, (2.23)
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where θ1 = π − θobj and θobj is the angle that the wave vector of the refracted ray

makes with the z− axis. tsobj and tpobj are the transmission coefficients of the lens for

the s− and p− polarized field components. We assume that they are equal to 1. The

term
√

n0

nobj

√
cos θobj comes from intensity law to satisfy energy conservation, n0 and

nobj are the refractive indices of the mediums on each side of the reference sphere and

in this system they are equal.

After transmission from the aSIL, the electric field can be expressed as:

E′∞ = [tssil[Einc.ŝ0]ŝsil + tpsil[Einc.p̂0]p̂sil]
√

cos θobj, (2.24)

where tssil and tpsil are the transmission coefficients for aSIL and ŝsil and p̂sil are unit

vectors for s− and p− polarized fields after aSIL. They are given in the following

equations:

ŝsil = −φ̂ = sinφx̂− cosφŷ, (2.25)

p̂sil = cosθsilcosφx̂ + cosθsilsinφŷ + sinθsilẑ, (2.26)

tssil =
2nobjcosθsil

nobjcosθsil + nsilcosθobj
, (2.27)

tpsil =
2nobjcosθsil

nobjcosθobj + nsilcosθsil
, (2.28)

where θsil = sin−1(nsilsinθobj/nobj) is the angle rays inside the aSIL make with the

z−axis.

Then, we can use the ASR equation given in Eq. 2.16 to calculate the field near

the focus.

Efoc(rsil) =
ire−iksilr

2π

∫∫
(k2xsil

+k2ysil
≤k2)

E′∞(kxsil , kysil)e
iksil.rsil

1

kzsil
dkxsil dkysil , (2.29)

where kxsil , kysil , kzsil are the spatial frequencies.

If kxsil , kysil , kzsil are represented in spherical coordinates, the field near the focus
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is given by,

Efoc(ρsil, θsil, zsil) =
iksilfobje

−ikobjfobj

2π

θmax∫
0

2π∫
0

E∞(θsil, φsil)

eiksilzsil cos θsileiksilρsil sin θsil cos(φ−φsil) sin θsil dφsil dθsil.

(2.30)

This formulation is sufficient to represent the field near the focus for a linearly-

polarized incident light with arbitrary polarization direction. The linearly-polarized

incident field in x−y plane with arbitrary polarization direction can be expressed as:

Einc = Einc

 cos ∆
sin ∆

0

 , (2.31)

where ∆ is the polarization angle and Einc is the amplitude profile of the incom-

ing laser beam. For an incoming laser beam of first Hermite Gaussian mode, the

amplitude profile can be expressed as follows:

Einc = Eofw(θobj) = Eoe
−f2 sin2 θobj/w2

0 . (2.32)

A detailed procedure to calculate mathematically the integral over φ is given

in (Novotny and Hecht, 2006). After integration and change of variables a final

expression for the focused field of a linearly-polarized incoming light with arbitrary

polarization in aSIL microscope can be obtained. This final expression for Efoc (Chen

et al., 2012) is given by:

Efoc = −iksilfobje
−ikobjfobj

2
E0

 cos∆(IL0 + IL2 cos2φsil) + sin∆IL2 sin2φsil
cos∆IL2 sin2φsil + sin∆(IL0 − IL2 cos2φsil)

2iIL1 (cos∆cosφsil + sin∆sinφsil)

 , (2.33)
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where

ILm =

θmax
obj∫
0

(cosθobj)
3/2tanθsilJm(ksilρsilsinθsil)T

L
me
−iksilzsilcosθsil dθobj, (2.34)

TL0 = tssil + tpsilcosθsil, (2.35)

TL1 = tpsilsinθsil, (2.36)

TL2 = tssil − t
p
silcosθsil, (2.37)

Jm(.) is the first-kind Bessel function of order m and θmaxobj is the maximum collection

angle of the objective lens.

Reflected image of a focused spot in aSIL microscopes

Figure 2·7: Investigation of the reflected image of a focused spot

In this section, the formulation to calculate the reflected image of a focused spot

of a linearly-polarized beam focused at an interface between two dielectric media is

presented. The system configuration is shown in Fig. 2·8. A linearly-polarized beam

is reflected by a beam splitter (BS) and focused by an aSIL system on the interface

of silicon and silicon dioxide. The reflected light from the interface collected by the

aSIL system is transmitted through the beam splitter and refocused by a second lens.

The calculations for the reflected light follow the same procedure as in previous
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section. The expressions are the same up to Eq. 2.24. After transmission from the

aSIL, the field propagates to the interface and then is reflected from the interface.

The reflected field can be expressed as:

E′′∞ = e−2ikzsilz0 [tssilr
s
int[Einc.ŝ0]ŝsil + tpsilr

p
int[Einc.p̂0]p̂sil]

√
cos θobj, (2.38)

where rpint and rsint are the fresnel reflection coefficients of the interface for p− and

s−polarizations, z0 is the longitudinal distance of the interface to the focus point.

Since the field is reflected and the propagation direction is inverted in z axis, the

expression for unit vectors for s− and p− polarized fields has changed:

ŝsil = φ̂ = −sinφx̂ + cosφŷ, (2.39)

p̂sil = cosθsilcosφx̂ + cosθsilsinφŷ + sinθsilẑ. (2.40)

After transmission from aSIL the field can be expressed as:

E′′′∞ = e−2ikzsilz0 [tssilr
s
intt

s
sil2[Einc.ŝ0]ŝobj + tpsilr

p
intt

p
sil2[Einc.p̂0]p̂obj]

√
cos θobj, (2.41)

where tssil2 and tpsil2 are the transmission coefficients for the aSIL for the new direction.

Next, the field is refracted at the objective, transmitted through BS and then refracted

at the second lens. The field after refracting at the second lens is given by:

E′′′′∞ = e−2ikzsilz0 [tssilr
s
intt

s
sil2[Einc.ŝ0]ŝccd + tpsilr

p
intt

p
sil2[Einc.p̂0]p̂ccd]

√
cos θccd

√
n0

nccd
,

(2.42)

where

ŝccd = −φ̂ccd = sinφccdx̂− cosφccdŷ, (2.43)

p̂ccd = −θ̂ccd = −cosθccdcosφccdx̂− cosθccdsinφŷ + sinθccdẑ, (2.44)

nccd is the refractive index of the medium at the detector, and θccd is the collection
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angle of the second lens. Following the procedure in the previous section where we

used the Eq. 2.16 in order to calculate the focused field at the applanatic point, we

can use the same equation in order to calculate the reflected field, ERef , at the focus

of the second lens. The derived equation is as follows:

ERef =
ikccdf

2
obje

−ikccdfccd

2fccd
E0

 cos∆(IR0 − IR2 cos2φccd)− sin∆IR2 sin2φccd
−cos∆IR2 sin2φccd + sin∆(IR0 + IR2 cos2φccd)

iIR1 (cos∆cosφccd + sin∆sinφccd)

 ,
(2.45)

where

IRm =

θmax
obj∫
0

fw(θobj)
cosθobj
cosθccd

sinθobjJm(kccdρccdsinθccd)T
R
m

ei(kccdzcosθccd−2ksilcosθsilz0) dθobj,

(2.46)

TR0 = tpsilr
p
intt

p
sil2cosθccd − t

s
silr

s
intt

s
sil2, (2.47)

TR1 = tpsilr
p
intt

p
sil2sinθccd, (2.48)

TR2 = tpsilr
p
intt

p
sil2cosθccd + tssilr

s
intt

s
sil2. (2.49)

ERef will be used in the following chapters for PSF calculations to be used in inversion

techniques for resolution improvement.

Green’s function of an aSIL microscope for imaging objects at an interface

The goal of this section is to review dyadic Green’s function of an aSIL microscope to

investigate the high-NA far-field imaging of buried objects beyond an interface. The

schematic illustration of the problem is given in Fig. 2·8. A dipolar object with an

electrical dipole moment µ is located in the silicon dioxide medium that has a lower

refractive index (nox) than the silicon immersion medium (nsil). The electromagnetic

solution to the problem of propagating this dipole moment to the CCD plane can be
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Figure 2·8: Schematic of the problem of far-field field propagation
with Green’s function in aSIL microscope

formulated using the Green’s function formalism:

E(r) = ω2µ0

←→
G aSIL(r; rd).µ, (2.50)

where ω is the oscillation frequency of the light, µ0 is the vacuum permeability, rd is

the location of the dipole object, r is the propagation location at the detector plane

and
←→
G aSIL is the Green’s function for aSIL microscope accounting for the planar

dielectric interface. The Green’s function satisfying the homogenous space solution

is given in (Novotny and Hecht, 2006). However, since objects of interest in ICs

are located beyond an interface, the Green’s function in (Novotny and Hecht, 2006)

needs to be modified. The Green’s function for aSIL microscope (Yurt et al., 2014b)

accounting for the planar dielectric interface is given in the following equation:

←→
G aSIL = −ikccdfobj

8πfccd

√
nobj
nccd

ei(kccdfccd+kobjfobj)

I0 + I21 I22 −2iI11
I22 I0 − I21 −2iI12
0 0 0

 , (2.51)
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where

I0 =

θmax
obj∫
0

sinθobj
√
cosθobj

nsil
nobj

(tssil2
kzsil
kzox

tox
s + tpsil2

nsil
nox

tpoxcosθsil)J0(ρ)e−iz dθobj,

I11 =

θmax
obj∫
0

sinθobj
√
cosθobj

nsil
nobj

(tpsil2
nsilkzsil
noxkox

tpoxsinθsil)J1(ρ)e−izcosϕ dθobj,

I12 =

θmax
obj∫
0

sinθobj
√
cosθobj

nsil
nobj

(tpsil2
nsilkzsil
noxkox

tpoxsinθsil)J1(ρ)e−izsinϕ dθobj,

I21 =

θmax
obj∫
0

sinθobj
√
cosθobj

nsil
nobj

(tssil2
kzsil
kzox

tox
s − tpsil2

nsil
nox

tpoxcosθsil)J0(ρ)e−izcos2ϕdθobj,

I21 =

θmax
obj∫
0

sinθobj
√
cosθobj

nsil
nobj

(tssil2
kzsil
kzox

tox
s − tpsil2

nsil
nox

tpoxcosθsil)J0(ρ)e−izsin2ϕdθobj,

(2.52)

ρ =
√
x2 + y2,

ϕ = tan−1(y/x),

x = −(kccdsinθccdxccd + ksilsinθsilxd),

y = −(kccdsinθccdxccd + ksilsinθsilyd),

z = d(kzox − kzsil)−

kccdcosθccdzccd + kox

√
1−

(
ksil
kox

)2

sin2θsilzd


(2.53)

k is the wave number in the scone lens space, fccd is the focal length of the second

lens, nccd is the refractive index of the second lens medium. A detailed explanation

for the derivation of Green’s function for structures buried in single medium can be

found in (Hu et al., 2011).
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Chapter 3

Model of a point spread function for a

subsurface aSIL imaging system

In high-NA optical systems, multiple observations can be obtained by changing the

polarization direction of the linearly-polarized input light source. Each of the ob-

servations acquired by linearly-polarized light with different polarization directions

provides more detail in one specific direction of spatial image coordinates while under-

resolving in other directions. This is due to the fact that linearly-polarized light em-

ployed as the input source in high-NA systems results in a PSF that has an elliptical

rather than circularly-symmetric support. In order to explain these properties and

to have an accurate observation model, full vectorial analysis of fields is required.

This model can be divided into three components where we first calculate the focused

light near the object of interest, then use rigorous numerical methods to calculate the

scattered light resulting from the interaction between the focused light and the object

of interest, and then propagate the scattered field to the far field. In Section 2.3.2,

a review of these components is presented and an expression for the electric field at

the detector is given in Eq. 2.15. This is a nonlinear observation model and we need

rigorous numerical analysis methods, such as FDTD to calculate the scattered field

for an arbitrarily-shaped object. For a confocal system, the object is raster scanned

and for each focus position, the field at the detector is calculated using the Eq. 2.15

and then the intensity for each scan position is calculated by integrating over the

detector region. The image of an arbitrary object can be calculated by using this
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procedure. FDTD is a computationally intensive method and the confocal system re-

quires the use of the FDTD solver for each scan position. In the following chapters we

propose image reconstruction techniques for resolution improvement in high-NA sys-

tems. Incorporating this computationally-intensive procedure into a reconstruction

framework would significantly increase the computation time. Therefore, we need an

approximate linear model which relates the intensity of the object with the collected

image intensity. In this chapter, we introduce such a linear model in Section 3.1 and

we explain how a PSF for this linear model can be modeled in Section 3.2.

3.1 Linear observation model

We approximate the nonlinear optical system with a linear convolutional forward

model relating the intensity of the object to the collected image intensity as follows:

gj(x, y) = hj(x, y) ∗ f(x, y), (3.1)

where gj(x, y) is the observed intensity under linearly-polarized light in direction j,

f(x, y) is the reflectivity of the underlying object, ∗ denotes the convolution opera-

tion, and hj(x, y) is the PSF of the optical system having linearly-polarized light in

direction j as the incident light source.

We have used two different approaches in order to model the PSF. The following

section explains the details for these two different approaches.

3.2 Modeling of the PSF

The PSF of a system can be modeled as the intensity of the electric field at the

detector plane as a result of a point source, in other words as a result of a very

small object. In Section 2.3.2, the electric field at the detector plane of an aSIL

microscope is expressed in Eq. 2.15. This equation expresses the electric field at the
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detector plane in terms of the scattered field Escat, the interaction of the object with

the focused light, and the reflected field ERef , the light reflecting from the interface

the object is located on. The first approach uses the fact that the intensity of the

scattered field is very small compared to reflected field from the dielectric interface

for a point source. For this reason, it models the PSF only in terms of the reflected

field. However, this approach ignores the dependence of the PSF of an assumed linear

model on material properties of the object and on the size of the object. For large

objects and for some materials, a simple model based only on the reflected field is

sufficient, but for smaller structures and materials such as metal, a more accurate

complex model considering the effect of the scattered field is required. Therefore, we

introduce the second approach which models the PSF in terms of both the scattered

field and the reflected field. This approach introduces a parameter which models the

dependence of the PSF on the size of objects. The following subsections explain these

two approaches in detail and present simulated PSFs.

3.2.1 PSF as the reflection of a tightly focused spot

The first approach for modeling the PSF only considers the light reflected from the

interface that the structures are located on, it ignores the scattered field of the point

source. This model is useful for large structures and for materials for which inter-

ference between the scattered field and the reflected field is not dominant. In this

model, the first term in in Eq. 2.15 is ignored. Hence, we can express the electric field

at the detector plane only in terms of the reflected field:

Edet(x, y) = ERef (x, y). (3.2)

The PSF of the system can be calculated as the magnitude of the reflected field:

h(x, y) = ‖ERef (x, y)‖2. (3.3)
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Therefore, the PSF becomes the image of a tightly focused beam. The details of

calculating the reflected light of a linearly-polarized incident beam are given in Sec-

tion 2.3.2. This PSF does not include effects coming from the material properties of

the structures. However, it still accounts for vectorial properties resulting from the

interaction of polarized light with the dielectric interface. The PSF of an aSIL system

with linearly polarized input light using this approach, given in Eq. 2.45, is shown

in Fig. 3·1. It can be seen from the figure that it has an elliptical support providing

higher resolution in one axis than the other. When the polarization angle of the

linearly polarized input light is changed, the PSF rotates following the polarization

angle. Cross sections for the PSF in Fig. 3·1a are shown in Fig. 3·2. In Fig. 3·3,

the observation data for a polysilicon object at the silicon-silicon dioxide interface

are given. The horizontal and vertical structures have different resolution and the

elliptical support of the PSF explains the dependence of resolution on the orientation

of the lines.
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Figure 3·1: Simulated theoretical PSF for linearly-polarized input
light (a) in x direction (b) in y direction
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Figure 3·3: Experimental observation images under polarization in
(a) x direction and (b) y direction.

3.2.2 Green’s function approach for PSF modeling

When structures of interest are much smaller than the focused beam and they are

made of materials such as metals, a more accurate PSF is required to efficiently

model the optical system. Therefore, we propose a second approach which is based

on a nonlinear optical model. According to Eq. 2.15, there is an interference between

the reflected field and the far field propagation of scattered field. The first approach

in Section 3.2.1 ignores the phase effects as a result of this interference. Especially

when structures of interest are made of materials such as metals, these interference
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effects are more dominant. In Fig. 3·4, observation data are shown for objects of

interest that are made of aluminum. We observe a black outline effect where there is

an apparent dip in the intensity at the edges of the structures. This observation data

shows the requirement for a more accurate model.

(a) (b)

Figure 3·4: Experimental observation images of aluminum structures
under polarization in (a) x direction and (b) y direction.

In order to improve the PSF model, we propose a second approach which is based

on the following nonlinear optical model:

h(x, y) = ‖α ∗
←→
G aSIL(x, y;x′, y′) ∗ ~Escat(x′, y′) + ~ERef (x, y)‖ − ‖ ~ERef (x, y)‖2, (3.4)

where α is a coefficient which accounts for the increase in the scattered field as the

size of the objects is increased, x and y are coordinates in image plane and x′ and. In

order to simulate the PSF of the system, a spherical scatterer with a radius of 25 nm

is assumed to be placed near the interface where the objects of interest are located.

Then, the PSF of the system is calculated using the scattered field of this spherical

object obtained with FDTD solver and the formulation given in Eq. 3.4. When the

size of objects of interest increase, the amplitude of Escat gets larger. Rather than

performing a full simulation for each case, we introduce the term α in Eq. 3.4 to adjust
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the PSF depending on the size of object of interest and still use the LTI model. We

can change the term α depending on the size of the objects of interest.

There are two types of samples we are studying, the first one has aluminum res-

olution structures fabricated on silicon, therefore located on a silicon-air interface.

The second one has polysilicon structures located on a silicon-to-silicon dioxide inter-

face. Therefore, we simulated two different PSFs. A spherical particle of radius 25

nm made of the material of interest is placed on the corresponding interface and the

image is calculated using Eq. 3.4. Fig. 3·5 shows images of PSFs of objects made of

polysilicon and aluminum for different values of α and in Fig. 3·6 cross sections are

plotted to show how the PSF changes when α is changed. We observe that the PSF for

an aluminum object has a higher dependence on the size of the particle whereas the

PSF for a polysilicon structure does not change as much when α is increased. Fig. 3·7

compares the cross sections from the simulated PSF and a cross section along the

green line in Fig. 3·7a. The structure in the shape of 2 is made of aluminum and

placed at the interface of silicon and air. The cross section is along a line which is

thin compared to PSF and can be considered as a line response. Therefore, the PSF

is consistent with this experimental data cross section. They have similar shapes and

they both show similar dips caused by interference effects.

3.3 Conclusion

In this Chapter, we proposed two approaches to model the PSF for high-NA aSIL

subsurface imaging. Our goal is to use this PSF for image reconstruction in the

following chapters in order to provide image enhancement and resolution improvement

to high-NA aSIL imaging of ICs. Both of these PSF models use vectorial optics to

account for polarization effects in high-NA subsurface imaging. The Green’s function

approach extends the first approach in order to provide a more accurate model suitable
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Figure 3·5: Simulated PSFs with linearly-polarized input light in the
y direction for aluminum objects (a) α = 23, (b) α = 2.53, (c) α = 33,
and for polysilicon objects (d) α = 23, (e) α = 2.53, (f) α = 33.

for a wider range of materials. It also models the dependence of the PSF on the size

and the material of the object of interest.
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Figure 3·6: Comparison of PSF cross sections for different values of α
for aluminum objects (a) horizontal cross section, (b) vertical cross sec-
tion, and for polysilicon objects (c) horizontal cross section, (d) vertical
cross section.
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perimental data along the green line, (c) PSF cross section blue for
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Chapter 4

Analysis-based sparse image

reconstruction framework for integrated

circuit imaging based on polarization

diversity

In this chapter, our goal is to benefit from the properties of polarized light in high-NA

systems and the sample being imaged in order to improve resolution of collected aSIL

IC images. We propose an analysis-based sparsity paradigm which combines multiple

data under linearly-polarized light with different polarization directions. Altering the

polarization direction of linearly-polarized input light in high-NA systems enables the

collection of optical images with varying spatial resolution in different directions. We

propose a novel image reconstruction algorithm that produces a single image, with

improved resolution, from a set of images taken using linearly-polarized light with

different polarization directions. Features in ICs are composed of lines and rectan-

gular structures and some structures are much smaller than the PSF, this results in

piecewise-constant regions and also in images with small scatterers. Therefore, we use

non-quadratic regularization functionals which preserve the edges of the underlying

features thus enabling recovery of small scatters.

This chapter is organized as follows. In Section 4.1, we provide details of the

proposed framework, including the assumed forward model, and describe the proposed

reconstruction method. In Section 4.2, we present reconstruction results for simulated
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data obtained using the assumed forward model. In Section 4.3, we present results

for experimental aSIL data acquired with linearly-polarized and also with circularly-

polarized light. Section 4.4 presents a discussion on how reconstruction performance

is affected when the boundary conditions are modified. In Section 4.5, we draw

conclusions from our work.

4.1 Proposed framework

4.1.1 Regularized image reconstruction framework for resolution

enhanced IC imaging

The goal of the proposed image reconstruction framework is to take advantage of high-

resolution orientations in different polarizations (decreased PSF support) and produce

a single higher-resolution image. Image reconstruction should also take into account

the fact that the underlying features have smooth, homogeneous regions and small

scatterers. This prior knowledge about the underlying object can be incorporated

in the reconstruction by employing non-quadratic functionals in regularization as

explained in Section 2.1.2. The regularized reconstruction can be formulated as the

following optimization problem:

f̂ = arg min
f
J(f), (4.1)

J(f) =
N∑
j=1

‖ hj(x, y) ∗ f(x, y)− gj(x, y) ‖22 + λ1 ‖ Of(x, y) ‖1 +λ2 ‖ f(x, y) ‖1,

(4.2)

where N is the total number of acquired images, hj is the PSF in polarization direction

j, gj is the observation, f is the underlying object reflectivity, and λ1 and λ2 are

regularization parameters. The first term in Eq. 4.2 is the data fidelity term matching

the observed noisy image to the unknown image of the underlying object f , while the

second and third terms are regularizers that favor sparsity in the edge field of the
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reconstructed image and the sparsity in the reconstructed image, respectively. Such

a linear combination of terms has been used successfully in other application domains

(Çetin and Karl, 2001; Tuysuzoglu et al., 2012).

In practice, the data we collect is discretized in spatial coordinates on a uniformly

spaced grid and Eq. 4.2 becomes:

J(f) =
N∑
j=1

‖ Hjf − gj ‖22 + λ1 ‖ Df ‖1 +λ2 ‖ f ‖1, (4.3)

where g is the vectorized discrete observation data, f is the discrete underlying object

image, Hj is the Toeplitz matrix that implements convolution as a matrix operation,

and D is the discrete approximation to the gradient operator that computes first-order

image differences in the horizontal and vertical directions. The `1 -norm employed in

the 2nd and 3rd terms of Eq. 4.3 is non-differentiable in the vicinity of 0. Therefore,

we use the following smooth approximation to the `1 -norm:

||f ||1 ≈
K∑
i=1

(
|(f)i|

2 + β
)1/2

(4.4)

where β > 0 is a small constant, K is the length of the vector f , and (f)i is the ith

element of f . Using this approximation, the cost function in Eq. 4.3 becomes:

J̃ (f) =
N∑
j=1

∣∣∣∣Hjf − gj
∣∣∣∣2

2
+ λ1

M∑
i=1

(
|(Df)i|

2 + β
)1/2

+ λ2

K∑
i=1

(
|(f)i|

2 + β
)1/2

(4.5)

4.1.2 Solution to the optimization problem

The cost function in Eq. 4.5 is non-quadratic resulting in a challenging minimization

problem. The quasi-Newton optimization method developed in (Çetin and Karl, 2001)

is adapted to solve the minimization problem. The gradient of the cost function is
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expressed as:

OJ̃ (f) = H̃ (f) f − 2
N∑
j=1

HjTgj, (4.6)

where

H̃ (f) , 2
N∑
j=1

HjTHj + λ1D
TW1 (f)D + λ2W2 (f) , (4.7)

W1(f) , diag

{
1

((Df)2i + β)1/2

}
,

W2(f) , diag

{
1

((f)2i + β)1/2

}
,

(4.8)

where diag {·} is a diagonal matrix, and H̃ (f) is an approximation for the Hessian

used in the quasi-Newton method. Each iteration of the quasi-Newton method is as

follows:

f̂ (n+1) = f̂ (n) −
[
H̃
(
f̂ (n)
)]−1

∇J̃
(
f̂ (n)
)
. (4.9)

Substituting the cost function given in Eq. 4.5, the following fixed-point iterative

algorithm can be obtained:

H̃
(
f̂ (n)
)

f̂ (n+1) = 2
N∑
j=1

HjTgj. (4.10)

The iterations are terminated when ‖f̂ (n+1) − f̂ (n)‖22/‖f̂ (n)‖22 < δ, where δ is a small

positive constant. Inside this iterative algorithm, another iterative algorithm, pre-

conditioned conjugate gradient (CG) algorithm (Barrett et al., 1994), is employed

in order to solve the set of linear equations (4.10) to calculate the updated estimate

f̂ (n+1) for a given H̃
(
f̂ (n)
)

. The CG iterations are terminated when the `2 -norm of

the relative residual becomes smaller than a threshold δCG > 0.

The solution is initialized with the observation data at one polarization direction

in the beginning of iterations. However, we also tried initialization with ”all zeros”

vector and that also converged to the same solution.
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The convolution operation requires the domain of the output signal to be larger

than the domain of the input signal by the support of the PSF. In convolutional

reconstruction methods, the observed data is usually expanded by the size of the

PSF so that the estimated underlying object has the same support as the original

observed data. One approach for estimating the expanded area is to mirror the

boundary region in the original observed data. However, since in our formulation

the imaged structures are small compared to the support of the PSF, this results in

significant errors in the estimated expanded area thus degrading the reconstruction

performance. Another approach is to keep the observed data size the unchanged

and only reconstruct a cropped region in the center with a smaller support than the

observed data. However, this assumes that the underlying object image does not have

any structure outside that region. Both of these methods rely on assumptions which

cause large errors in the reconstruction in our problem since the support of the PSF

is large compared to the size of the structures of interest in the underlying object.

For this reason, we modified the forward model so that the domain of the underlying

object intensity is larger than the domain of the observed intensity by half of the

support of the PSF in each direction. This new forward model can be described by

the following equation,

gj(x, y) = (hj(x, y) ∗ f(x, y))w(x, y), (4.11)

where w(x, y) is a window function which is zero outside the field of view. This

approach acknowledges the fact that the observation data near an edge depends on

the physical scene outside of the field of view. A comparison of this new forward model

with the two aforementioned methods is presented in Section 4.4 using simulated and

experimental data.
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4.2 Simulated-data experiments

In order to assess the performance of the proposed image reconstruction algorithm

in a controlled environment, we have simulated our experimental configuration. This

configuration uses backside confocal imaging incorporating an aSIL under linearly-

polarized light. We first simulated a theoretical PSF based on this configuration using

the first approach explained in Section 3.2.1. We assumed an NA of 3.18 and a laser

wavelength of 1300 nm. Fig. 3·1 shows the simulated PSF for x-polarized input light

and for y-polarized input light.

We used the observation model in Eq. 4.11 and the theoretical PSF shown in

Fig. 3·1 to create simulated observed images gj and we performed reconstruction

from the simulated data. In Section 4.3, we also use the PSF shown in Fig. 3·1 to

perform reconstruction from images acquired experimentally under linearly-polarized

light.

The simulated data were created using a phantom which has the dimensions of a

sample employed in our real data experiments. Fig. 4·1a shows the simulated object

image using a pixel size of 50nm, while Figs. 4·1b and 4·1c show simulated observation

images for x- and y-polarized input light, respectively.
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Figure 4·1: (a) Simulated object image and observed images under
polarization in (b) x direction and (c) y direction.
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First, we performed reconstruction using the observed images in Fig. 4·1 with

no regularization terms using CG algorithm. We performed separate reconstructions

from the observed image under x−polarization (Fig. 4·2a), and under y−polarization

(Fig. 4·2b). Then, we performed reconstruction jointly under both polarizations

(Fig. 4·2c). Our goal here is to show the improved reconstruction quality when

multiple-polarization data are employed. It is clear from Fig. 4·2 that using multiple-

polarization data leads to a visually improved reconstruction quality. We will also

evaluate reconstruction performance quantitatively later in this section.
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Figure 4·2: Image reconstruction results on simulated data with no
regularization: (a) only from an observation image under x-polarized
light, (b) only from an observation image under y-polarized light, (c)
from observation images under both x- and y-polarized light.

In the second set of experiments, we performed reconstruction with both regu-

larization terms (Eq. 4.2). The images reconstructed from observation under x and

y polarization separately are shown in Figs. 4·3a and 4·3b. The regularization pa-

rameters were chosen as λ1 = 0.0025 and λ2 = 0.0002 for both x−polarization only

reconstruction and y−polarization only reconstruction. These choices were obtained

through an exhaustive search where the regularization parameters minimizing the

MSE are chosen. The reconstruction obtained by using both polarizations jointly is

shown in Fig. 4·3c. The regularization parameters were chosen as λ1 = 0.005 and

λ2 = 0.0004. These results indicate that using data taken under light which is linearly-
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Figure 4·3: Regularized image reconstruction results on simulated
data with=: (a) only from an observation image under x-polarized light
for λ1 = 0.0025 λ2 = 0.0002, (b) only from an observation image under
y-polarized light for λ1 = 0.0025 λ2 = 0.0002, (c) from observation
images under both x- and y-polarized light for λ1 = 0.005 λ2 = 0.0004.

polarized in multiple directions is more advantageous than using data obtained under

a single polarization direction. Also, it is clear that regularization terms help preserve

sparsity of the edge field of the reconstructed image. We note that these simulated

observed images are noiseless, while in any actual experimental scenario the observed

images will likely be noisy. This along with the fact that in real conditions the linear

forward model may not be accurate, the reconstruction performance may degrade.

The reconstructions for single polarization are not perfect even though no noise is

added to observation data because we are estimating a larger regions than field of

view and this results in an underdetermined system. To quantify the reconstruction

performance, we calculated the mean square error (MSE) between the underlying

object image and the reconstructed image as follows:

MSE =

∑LS
k=1(f̂k − fk)

2

LS
(4.12)

where f̂ is the reconstruction result, f is the vectorized discrete underlying object

intensity, and L and S are the number of pixels in horizontal and vertical directions,

respectively. The bar plot in Fig. 4·4 presents MSE values for different types of
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reconstructions. They show that the reconstruction performance increases, when

we employ reconstruction from observed images under both polarization directions

jointly compared with image reconstruction from an observed image under single

polarization. They also demonstrate the increase in reconstruction performance by

incorporating regularization terms in image reconstruction. The MSE for regularized

image reconstruction employing both polarization data is sufficiently small that it

does not appear in the plot.

Unregularized Reconstruction Regularized Reconstruction
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
S

E

 

 

x polarization only

y polarization only

both polarizations

Figure 4·4: MSE between reconstructed images and underlying object
image

We also performed experiments where we used a phantom which can be used as

a resolution target. This phantom is shown in Fig.4·5. It consists of lines with vary-

ing width and varying separation. For this experiment, observation data is created

convolving the phantom with the PSF that is simulated using the Green’s function

approach explained in Section 3.2.2. The lines are assumed to be aluminum metal

lines because this is the case for the resolution target used in real data experiments
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shown later. For the simulation of the PSF, an aluminum spherical particle of radius

25nm is assumed to be placed on the silicon-air interface and the image is calculated

using Eq. 3.4 with α = 2.53. The simulated PSF is shown in Fig.3·5b. The pixel size

for the PSF and the phantom is 46nm. In this experiment, we also added additive

Gaussian noise to the observation data and we study how reconstruction performance

changes with different levels of noise. Although the signal-to-noise ratio (SNR) is not

very low for experimental aSIL images in the next section, there are image modalities

such as LVI that we study in Chapter 6 that have very low SNR levels. Therefore,

it is useful to compare the performance of different sparse reconstruction approaches

for different levels of noise. In this experiment, in addition to studying reconstruc-

tion performance for different levels of noise, we also study the resolution limit in

the reconstructed image since the phantom has lines with varying width and varying

separation. Observation data with different levels of noise are shown in Fig. 4·6. The

intensity range for the resolution target phantom is [0,1], but observation data in

Fig. 4·5 have negative values. The reason for that is that reflection from the interface

has higher intensity than the scattered light from the structures and the intensity of

reflection from the interface has been subtracted from the total intensity in the PSF

model in Eq. 3.4. In other words, the simulated PSF have negative intensity values

and t5his results in negative values in the observation data.
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Figure 4·5: The resolution target phantom
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Figure 4·6: Simulated observation images of the resolution phantom
of Fig. 4·5 for x−polarized input light (a) SNR=16dB, (c) SNR=20dB,
(e) SNR=25dB, (g) SNR=30dB, and for y−polarized input light (b)
SNR=16dB, (d) SNR=20dB, (f) SNR=25dB, (h) SNR=30dB
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The results of the multiple polarization reconstruction framework are shown in

Fig. 4·7. One of the resolution metrics used for IC imaging is the Sparrow resolution

criterion. The Sparrow criterion defines the resolution as the distance between the

peaks of the two PSFs when the midpoint just becomes visible. Similarly, we can

evaluate if a resolution structure is resolved or not, in other words, if a structure

is localized or not, depending on whether we observe a peak. The thinnest line of

width 56nm can only be localized for noise levels of 25 dB and 30 dB. For higher

levels of noise the localization accuracy decreases. Also a quantitative comparison of

the reconstruction performance for different levels of noise is shown in the MSE plot

in Fig. 4·8. The error bars are calculated using the standard error given by σ/
√
n,

where σ is the standard deviation of the MSE values over all realizations and n is the

number of realizations. We have used 10 realizations in this experiment.

4.3 Real-data experiments

In order to test the proposed reconstruction method in a real-data scenario, we ac-

quired experimentally three sets of images. The first data set was acquired using

linearly-polarized light focused on passive polysilicon structures at the silicon-silicon

dioxide interface in a test sample. The second dataset was acquired using circularly-

polarized light focused on passive aluminum structures at the silicon-air interface.

Under circularly polarized light, the PSF has a circular support having the same

width in all directions, thus image reconstruction was performed using a single ob-

served image. The third data set, acquired using linearly-polarized light, also contains

images of passive aluminum structures at the silicon-air interface. However, the struc-

tures in the third set are smaller and their separation is also smaller. Hence, this data

set is important for showing a super-resolution-like behavior of the proposed image

reconstruction framework.
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Figure 4·7: Results of regularized image reconstruction combining
both polarization data (a) SNR=16dB λ1 = 0.0025 λ2 = 0.005, (b)
SNR=20dB λ1 = 0.0005 λ2 = 0.005, (c) SNR=25dB λ1 = 0.00025
λ2 = 0.00025, (d) SNR=30dB λ1 = 0.00025 λ2 = 0.005
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Figure 4·8: MSE between underlying object image and reconstructed
images from observation data with different levels of noise
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The experimental images for the first set of data are shown in Figs. 4·9a and 4·9b

for the x and y directions, respectively. The image reconstruction results for this data

set are presented in Figs. 4·10a, 4·10b, and 4·10c. The regularization parameters were

chosen as λ1 = 0.75 and λ2 = 0.5 for x−polarization only reconstruction and as λ1 =

0.5 and λ2 = 0.35 for y−polarization only reconstruction. These choices were obtained

through an exhaustive search where the regularization parameters giving the best

qualitative result were chosen. The regularization parameters were chosen as λ1 = 1

and λ2 = 0.5 for both polarizations reconstruction. The pixel size for this data set

is 18.5nm. In the reconstruction framework, we employed the theoretical PSF shown

in Fig. 3·1. Reconstruction results on experimental data indicate that performing
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Figure 4·9: Experimental observation images under polarization in
(a) x direction and (b) y direction.

reconstruction on multiple-polarization images increases the reconstruction quality

- reconstructed images exhibit homogeneous regions, accentuated edges and shaper

structures in all directions. In particular, the reconstruction obtained using only x-

polarized data is of higher contrast and better resolution for horizontal structures than

for vertical structures. A corresponding observation holds for the reconstruction from

y-polarized data. The reconstruction obtained using both polarization data preserves

the intensity of both vertical lines and horizontal lines. One metric of resolution for

optical images is the Houston resolution criterion. The Houston criterion defines the
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Figure 4·10: Regularized image reconstruction results on experimen-
tal data (a) only from an observation image under x-polarized light
for λ1 = 0.75 λ2 = 0.5, (b) only from an observation image under y-
polarized light for λ1 = 0.5 λ2 = 0.35, (c) from observation images
under both x- and y-polarized light for λ1 = 1 λ2 = 0.5.

resolution as the Full Width at Half Maximum (FWHM) of the PSF. Relating the

width of the PSF to the sharpness of the edges, the Houston criterion can used to judge

the resolution performance by the sharpness of the edges in the reconstructed image.

For this purpose, we compare cross sections from the reconstructed images and the

observation images. Comparing cross sections from the image reconstruction results

with the cross sections from the experimental observed images in Fig. 4·11, it is clear

that one can achieve edge resolution improvement with the proposed reconstruction

framework for IC images acquired with high-NA systems employing linearly-polarized

light.

The next experiment demonstrates the performance of the proposed methods when

samples of different material properties are observed under circularly polarized light.

The simulated theoretical PSF for the second set of data is presented in Fig. 4·12. We

have used the reflected field approach explained in Section 3.2.1 in order to simulate

this PSF. The microscope used to acquire these data had an NA of 3.2, and the

wavelength of light used was 1300 nm. We imaged two different regions with resolution

targets of different size. The experimental observations are shown in Figs. 4·13a and
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Figure 4·11: Cross sections from the observation data and recon-
structed images: (a) horizontal (b) vertical

4·13b. Unlike the observation images shown in Fig. 4·9, the images of these structures

show a black outline effect where there is an apparent dip in the intensity at the edges

of the structures. We believe these are caused by destructive interference effects

because of the change from a pure dielectric interface to a metal interface as the laser

spot scans through the transition region. The reconstruction results for this data set

are presented in Figs. 4·14a and 4·14b. The improvement for this data set is not as

obvious as the improvement for the previous data set because of the greater mismatch

between the assumed forward model and the actual system; the black outlines along

the edges are not predicted by the PSF. This study demonstrated that depending

on the size of the structures and on their material properties, the PSF needs to

be modified. This is why, the second approach to PSF simulation was proposed in

Section 3.2.2. For this reason, for the third set of data, which contains images of

aluminum structures, we will use the PSF simulated with the second approach.

The third data set contains aSIL images of horizontal and vertical resolution lines

with different pitches: 282nm, 252nm, and 224nm. They are made of metal aluminum

lines deposited on a double-sided polished silicon wafer, hence they lie on silicon-air
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Figure 4·13: Experimental observation images

interface. The Scanning Electron Microscope (SEM) images of the aluminum lines

are shown in Fig. 4·15. The aSIL microscopy data with x−polarized and y−polarized

input light of the resolution target are shown in Figs. 4·16a and 4·16b for 282nm pitch

lines, in Figs. 4·17a and 4·17b for 252nm pitch lines, and in Figs. 4·18a and 4·18b for

224nm pitch lines. The regularization parameters were chosen as λ1 = 0.0005 and

λ2 = 0.05 for the case of 282nm, as λ1 = 0.0005 and λ2 = 0.05 for the case of 252nm

and as λ1 = 0.00005 and λ2 = 0.001 for the case of 224nm. These choices were

obtained through an exhaustive search where the regularization parameters giving

the best qualitative result were chosen. Clearly, the 252nm and 224nm pitch lines
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Figure 4·14: Regularized image reconstruction results (a) λ1 = 0.1,
λ2 = 0.01, (b) λ1 = 0.1, λ2 = 0.01

cannot be localized in the observation data. In the reconstruction framework, we

have used the PSF shown in Fig. 3·5b with α = 2.53 for the 282nm and 252nm

pitch lines. However, for the 224nm pitch lines we have to account for the decrease

in the width of the lines and used the PSF with α = 2.43. The reconstructions are

shown in Fig. 5·18a, 5·19a and 5·20a. There are some oscillations in the background,

but the number of lines and the thickness of the lines for 282nm and 252nm pitch

lines match the SEM data. The reconstruction for 224nm pitch vertical lines is at

the limit of localization, and some of the horizontal lines cannot be localized. The

reason for this is the defect in the fabrication of the horizontal lines; it can be seen

in the SEM image in Fig. 4·15c. The resolution of the optical system was 282nm

according to the Sparrow criterion, since we can localize lines with 224nm separation

in the reconstructed image; the equivalent resolution was improved to 224nm by the

reconstruction framework.
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(a) (b) (c)

Figure 4·15: SEM images for lines resolution target with (a) 282nm
(b) 252nm (c) 224nm separation
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Figure 4·16: Observation data of resolution target of aluminum lines
with 282nm pitch (a) x−polarized input light (b) y−polarized input
light, (c) regularized reconstruction results for λ1 = 0.0005, λ2 = 0.05.
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Figure 4·17: Observation data of resolution target of aluminum lines
with 252nm pitch (a) x−polarized input light (b) y−polarized input
light, (c) regularized reconstruction results for λ1 = 0.0005, λ2 = 0.05.
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Figure 4·18: Observation data of resolution target of aluminum lines
with 224nm pitch (a) x−polarized input light (b) y−polarized input
light, (c) regularized reconstruction results for λ1 = 0.00005, λ2 =
0.001.
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Figure 4·19: Cross sections from the observation and reconstructions
for aluminum lines with 284nm separation (a) horizontal, (b) vertical.
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Figure 4·20: Cross sections from the observation and reconstructions
for aluminum lines with 252nm separation (a) horizontal, (b) vertical.
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Figure 4·21: Cross sections from the observation and reconstructions
for aluminum lines with 224nm separation (a) horizontal, (b) vertical.

4.4 Comparison of different boundary condition settings

We are modeling our system with a linear convolutional model. When we calculate

the convolution of two discrete signals, one with size L, the other with size P , the size

of the output signal is equal to L+P − 1. Modeling the system as in Eq. 3.1 requires

that the observed image be larger than the underlying object image. Conventional

image reconstruction techniques will set particular boundary conditions to handle

this problem. We first employed two different boundary condition assumptions to

handle this problem, but realized that since the size of the PSF is fairly large com-

pared to the size of the observed image, conventional boundary conditions degraded

the reconstruction performance. For this reason, we modified the forward model in

order to avoid approximations that conventional boundary conditions make about

the boundary pixels. These three different methods of handling boundary pixels are

explained in the following subsections.
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4.4.1 Mirroring the boundary pixels

Before reconstruction, the observed image is padded with size of the PSF minus 1

pixels by mirroring the pixels at the boundary. In other words, the observed image

will be in the center of a new padded image, and the boundary pixels of the padded

image will be the first and last pixels of the observed image. Then, this new padded

image will be employed to reconstruct an image of the same size as the observed

image. When the size of the PSF is not large or we do not have structures along

the boundary of the observed image, this method can be employed. However, in our

case, as we can see in Fig. 4·22, a large number of pixels were padded and structures,

which are not present in the underlying object, were created along the boundary of

the padded image.

(a) (b)

Figure 4·22: (a)observation (b)observation after mirror-image
padding

4.4.2 Reconstructing a cropped image

In this method, we do not modify the observed image but reconstruct an image

corresponding to the center area in the observed image with pixel size equal to the

number of pixels in observed image minus size of PSF plus 1. We basically perform
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a reconstruction for a cropped center area in the observed image. The issue with

this method is that it assumes the area outside of the cropped area in the underlying

object to be zero-valued. It assumes that there are no structures outside this cropped

region in the underlying object. For large PSFs, this method disregards fairly large

structures.

4.4.3 Modifying the forward model

The forward convolutional model is modified to account for the fact that we are

observing a smaller area compared with the area of the underlying object we are

reconstructing. In other words, we assume a convolutional model relating the area

we are reconstructing with a larger observation image and we assume that we are

cropping the center part, and only observing that part. This is expressed in Eq. 4.11.

This is also shown in Fig. 4·23. The window function w(x, y) corresponds to the

purple box in Fig. 4·23; in the new forward model the windowing function is added

to the convolution operation. With this model, the linear forward system becomes

underdetermined. We are trying to reconstruct a larger region than we are observing,

but we still have information contained in the boundary pixels of the observed image

about the region which is not in the field of view, because the pixels in the enlarged

reconstruction affect the pixels in the boundary of observation.

Figure 4·23: Diagram showing modification of the forward model
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4.4.4 Reconstruction results with different boundary condition settings
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Figure 4·24: Image reconstruction results on simulated data compar-
ing different boundary condition settings: (a) mirroring the boundary
pixels for λ1 = 0.5, λ2 = 0.75, (b) reconstructing a cropped center
area for λ1 = 0.375, λ2 = 0.59, (c) modifying the forward model for
λ1 = 0.0025, λ2 = 0.001.

In order to compare the reconstruction performance with these three different

boundary condition settings, we performed reconstruction on the simulated data pre-

sented in Section 4.2 and on the experimental data under linearly-polarized light

presented in Section 4.3. The results for the simulated data are shown in Fig. 4·24a,

4·24b, 4·24c and results on experimental data are shown in Fig. 4·25a, 4·25b, 4·25c.

We also calculated MSE values for simulated data reconstructions for each of the

boundary condition settings, (Fig. 4·26). These results show that modifying the for-

ward model outperforms the other two boundary condition settings.

4.5 Conclusions

In this Chapter, we proposed a framework for resolution improvement for back-

side aSIL images of integrated circuits. Modification of the polarization direction

of linearly-polarized light sources in high NA systems improves the resolution in se-

lected directions. We applied a regularized image reconstruction algorithm to a set
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Figure 4·25: Image reconstruction results on experimental data com-
paring different boundary condition settings: (a) mirroring the bound-
ary pixels for λ1 = 1.25, λ2 = 0.75, (b) reconstructing a cropped center
area for λ1 = 1, λ2 = 0.25, (c) modifying the forward model
for λ1 = 1, λ2 = 0.5.

mirroring cropping new forward model
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 4·26: MSE between reconstructed images and underlying ob-
ject image with different boundary condition settings.

of images collected with linearly-polarized light with different polarization directions

and obtained a single higher-resolution reconstructed image benefiting from the best

resolution in each observation image. The proposed method benefits from the prelim-

inary knowledge about the structure of the underlying object by incorporating non-

quadratic regularization functionals into the image reconstruction framework. We

showed the advantage of this type of regularization over unregularized reconstruc-

tion in simulated data. Combining multiple images under input light with different
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polarization directions increases the robustness of the reconstruction to noise in ex-

perimental data and increases robustness to mismatches between the actual system

and the assumed forward model. Additionally, we compared different techniques for

handling boundary pixels in a convolution model for an aSIL IC imaging system.

This study is critical for this application because the PSF is fairly large compared to

the size of objects of interest and conventional assumptions about boundary pixels

might cause large errors in the reconstructed image.
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Chapter 5

Dictionary-based image reconstruction for

resolution enhancement in integrated

circuit imaging

In this Chapter, we propose a synthesis-based image reconstruction framework which

couples overcomplete dictionary-based representation with physics-based forward model

to improve resolution and localization accuracy in high-NA confocal microscopy im-

ages of ICs.

Altering the polarization direction of linearly-polarized illumination in high-NA

systems provides polarization diversity enabling collection of multiple observations

with varying spatial resolution in different directions (Köklü et al., 2009). In Chap-

ter 4, we proposed a novel image fusion framework that benefits from this polarization

diversity and prior knowledge about the structures in ICs in order to achieve reso-

lution improvement. In this fusion framework, prior knowledge about the structures

in ICs, the fact that small features in ICs are composed of lines and rectangular

structures resulting in piecewise-constant images, is incorporated into the reconstruc-

tion framework by using non-quadratic regularization functionals, in other words by

an analysis-based sparsity paradigm. These non-quadratic functionals preserve the

sparsity and the edges of the underlying features. Although resolution improvement

can be achieved by these generic sparsifying priors, an additional improvement is

possible by further exploiting the nature of the data. Therefore, we propose another

framework which is based on overcomplete dictionaries and which exploits further the
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highly structured nature of IC features.

The domain of IC imaging is particularly suitable for the application of overcom-

plete dictionaries in an image reconstruction framework. Predefined overcomplete

dictionaries can be easily built using a limited set of building blocks derivable from

computer aided design layouts (CADs). Specifically, ICs are mostly composed of

horizontal or vertical lines of varying, constrained and known widths and lengths.

Therefore, the scene in the field of view can be sparsely represented using these

predetermined overcomplete dictionaries and this sparse representation will provide

increased robustness to model mismatches, noise and resolution limits since dictio-

nary elements pose strong priors for the structures in ICs. In this chapter, we present

an image reconstruction framework to improve the resolution in high-NA IC imaging

which couples a representation based on overcomplete dictionary with the extended

PSF model from Section 3.2.2.

This Chapter is organized as follows. In Section 5.1, we provide details of the pro-

posed framework. The observation model is described in Section 5.1.1. The sparse

representation framework is presented in Section 5.1.2, while the corresponding con-

struction of the dictionaries is described in Section 5.1.3. We present results on

simulated and experimental data in Section 5.2. In Section 5.4, we provide summary

and conclusions.

5.1 Dictionary-based image reconstruction framework for IC

imaging

5.1.1 Observation model

Given the PSF modeled by the Green’s function approach from Section 3.2.2, the

assumed linear convolution model is expressed as:

gj = Hjf , (5.1)
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where j indicates the polarization direction of linearly-polarized input light source,

gj is the vectorized discrete observation data, f is the discrete vectorized underlying

object image, Hj is the Toeplitz matrix that implements convolution as a matrix

operation based on the PSF in polarization direction j.

5.1.2 Sparse representation framework for resolution-enhanced IC imag-

ing

Our goal is to obtain high-resolution images through sparse image reconstruction by

using the information in CAD layouts. Additionally, we combine the information

coming from high-resolution orientation information in each observation by incor-

porating the multiple observations from Section 5.1.1 into the sparse representation

framework. The unknown underlying scene f can be represented as:

f = Φη, (5.2)

where Φ is an overcomplete dictionary composed of building blocks of the structures

in the IC and η is the vector of representation coefficients. The dictionary Φ can be

predetermined by using the CAD layouts, since we know the dimensions of structures

in ICs under consideration a priori. These structures are composed of lines of specified

width and varying length. Combining this sparse representation with the observation

model in Eq. 5.1, the overall model can be rewritten in the presence of noise wj as:

gj = HjΦη + wj. (5.3)

We now create an estimate of the underlying IC scene by posing the problem as an

`p regularization problem, i.e., a sparse reconstruction problem with respect to the
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given circuit dictionary Φ:

η̂ = arg min
η
J(η) =

N∑
j=1

‖ HjΦη − gj ‖22 + λ ‖ η ‖pp, (5.4)

where p ≤ 1, N is the total number of observed images at various polarizations and

λ is a regularization parameter that adjusts the overall level of problem sparsity. It

has been shown in spectral analysis that higher-resolution spectral estimates can be

obtained using the `p-norm, where p < 2 rather than the `2-norm (Ciuciu et al., 1999).

Previous studies show that `p-regularization with p < 1 can produce sparser solutions

than `1-regularization (Chartrand, 2007; Xu et al., 2012). However, in the case of

p < 1 the objective function in the minimization problem in Eq. 5.4 is non-convex,

whereas it is convex for the case of p = 1. The minimization problem with p = 1

is solved with the `1-ls solver provided by the authors of the interior-point method

for `1-regularized least squares in (Kim et al., 2007). For the case of p ≤ 1, the

p-Shrinkage algorithm in (Voronin and Chartrand, 2013) has been used.

5.1.3 Construction of dictionaries

The structures in ICs consist of flat regions consisting of horizontal and vertical lines

of constrained and varying width and length as can be seen in the CAD layout in

Fig. 5·1. To construct our dictionary, we divided the structures into rectangles and

included all possible locations of different size rectangles into the dictionary. For

example if we want to sparsely represent the design shown in Fig. 5·2, we would

construct the dictionary consisting of the elements shown in Fig. 5·3. The columns

of the dictionary Φ would consist of vectorized versions of all these images shown in

Fig. 5·3 where every third element of the dictionary is shown. Fig. 5·3 is a mosaic of

sub images of equal sizes and each sub image is a dictionary element. The size of the

dictionary depends on the number of dictionary elements, on pixel size and on the
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field of view.

Figure 5·1: CAD layout example

Figure 5·2: Design example

Ideally, we would specify the minimum and maximum width and length of the

rectangles, since these are set by design rules of ICs and then we would include all

rectangles within these limits to be in the dictionary.
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Figure 5·3: Dictionary elements for the design example from Fig. 5·2

5.2 Experimental results

5.2.1 Comparison of sparse reconstruction approaches through simulated

data

Our goal in this section is to compare different sparse reconstruction techniques on

simulated data with different levels of noise. Although the SNR is not very low for

experimental reflectivity images, there are image modalities such as the LVI that have

very low SNR levels. Therefore, it is useful to compare the performance of different

sparse reconstruction approaches for different levels of noise. The phantoms for res-
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olution targets used in the simulated experiments are shown in Fig. 5·4. In Figs. 5·5

and 5·6, simulated observation images of Phantom 1 and Phantom 2 are shown. For

each phantom, 8 observations are created using linearly-polarized incident light with

x− and y−polarization and 4 levels of additive Gaussian noise, with SNR given by

10 dB, 16 dB, 20 dB and 25 dB. The simulated observation images are created us-

ing convolution with the PSF presented in Section 3.2.2 for aluminum structures

and with α = 2.53. Figs. 5·7 and 5·8 compare different image reconstruction ap-

proaches; non-quadratic regularization that we studied in Chapter 4, dictionary-based

`1-regularization, and dictionary-based `p-regularization with p = 1/2 for the obser-

vations presented in Figs. 5·5 and 5·6. The reconstruction results show that when

there are different-size structures, the dictionary-based `p-regularization achieves bet-

ter localization accuracy than the non-quadratic regularization. One of the resolution

metrics used for IC Imaging is the Sparrow resolution criterion. The Sparrow crite-

rion defines the resolution as the distance between the peaks of the two PSFs when

the midpoint just becomes visible. Using this idea, we can evaluate if a resolution

structure is resolved or not, in other words, if a structure is localized or not, de-

pending on whether we observe a peak. Even the smallest structures are recovered

in Figs. 5·7b, 5·7c, 5·7e and 5·7f, whereas they cannot be localized in Figs. 5·7a and

5·7d. The plots in Figs. 5·9 and 5·10 compare mean square error (MSE) values for

different reconstruction approaches with respect to noise level. The MSE values are

calculated using 10 realizations and the sample mean of the MSE values is used in

the plot. The error bars are calculated using the standard error given by σ/
√
n,

where σ is the standard deviation of the MSE values over all realizations and n is

the number of realizations. The MSE plots show that reconstruction performance for

dictionary-based `p− regularization is higher than for non-quadratic regularization,

and also that the dictionary-based `1/2− regularization has the best reconstruction
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performance and robustness to noise. The MSE values for Phantom 2 are lower than

the ones for Phantom 1, this is because Phantom 1 has smaller structures which are

closer to resolution limit. For this reason, it is more challenging. In terms of com-

putation time, non-quadratic regularization is the faster than the dictionary-based

approach. As the dictionary size increases, the computation time and the memory

requirements also increase. The computation time is slowest for dictionary-based `1/2-

regularization but it can be decreased by initializing the result of dictionary-based

`1-regularization.
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Figure 5·4: Phantoms for resolution structures used in simulated ex-
periments (a) Phantom 1 (b) Phantom 2

5.2.2 Reconstruction results for aSIL microscopy data

We have 2 sets of experimental aSIL data. The first set contains linear polarization

observations of a resolution structure made of 0.35µm polysilicon lines fabricated on

silicon-silicon dioxide interface. The second set contains images of horizontal and

vertical resolution lines with different pitches; 282nm, 252nm, and 224nm. They are

made of metal aluminum lines deposited on a double-sided polished silicon wafer,

hence they lie on a silicon-air interface. The structure design for the first resolution

target and the SEM images of the aluminum lines are shown in Fig. 5·11. The
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Figure 5·5: Simulated observation images for Phantom 1 for
x−polarized input light: (a) SNR=10dB, (c) SNR=16dB, (e)
SNR=20dB, (g) SNR=25dB, and for y−polarized input light :(b)
SNR=10dB, (d) SNR=16dB, (f) SNR=20dB, (h) SNR=25dB.
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Figure 5·6: Simulated observation images for Phantom 2 for
x−polarized input light: (a) SNR=10dB, (c) SNR=16dB, (e)
SNR=20dB, (g) SNR=25dB, and for y−polarized input light: (b)
SNR=10dB, (d) SNR=16dB, (f) SNR=20dB, (h) SNR=25dB.
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Figure 5·7: Sparse image reconstruction results for Phantom
1, non-quadratic regularization (a) SNR=10dB (d) SNR=16dB
(g) SNR=20dB (j) SNR=25dB, dictionary-based `1−regularization
(b) SNR=10dB (e) SNR=16dB (h) SNR=20dB (k) SNR=25dB,
dictionary-based `1/2−regularization (c) SNR=10dB (f) SNR=16dB (i)
SNR=20dB (l) SNR=25dB
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Figure 5·8: Sparse image reconstruction results for Phantom
2, non-quadratic regularization (a) SNR=10dB (d) SNR=16dB
(g) SNR=20dB (j) SNR=25dB, dictionary-based `1−regularization
(b) SNR=10dB (e) SNR=16dB (h) SNR=20dB (k) SNR=25dB,
dictionary-based `1/2−regularization (c) SNR=10dB (f) SNR=16dB (i)
SNR=20dB (l) SNR=25dB
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Figure 5·9: MSE plot for reconstructions of Phantom 1
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Figure 5·10: MSE plot for reconstructions of Phantom 2
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CNN-shaped resolution target is large enough that all lines can be localized in aSIL

microscopy data. However, for the second resolution target with aluminum lines, the

lines are not localized, since the separation between the lines is smaller than the spot

size of the laser beam. We can relate the edge thickness to the Houston resolution

criterion since the width of the edge can be used to estimate FWHM of the PSF in

an optical system. The reconstruction of the first resolution target shows an overall

image enhancement and a better edge resolution. Moreover, according to the Sparrow

criterion, we can define the equivalent resolution of the reconstruction framework as

the distance between the peaks of two resolution lines when they just become visible.

The reconstruction of the aluminum line resolution data shows image enhancement,

improvement of edge resolution and improvement in localization accuracy.

(a) (b) (c) (d)

Figure 5·11: (a) CNN structure design and SEM images for lines
resolution targets with (b) 282nm (c) 252nm (d) 224nm line separation.

The aSIL microscopy images with linearly x−polarized and y−polarized light are

shown in Figs. 5·12a and 5·12b for the CNN-shaped polysilicon resolution target.

The results of various sparse reconstruction techniques for these observations are

given in Figs. 5·13a, 5·13b, and 5·13c for non-quadratic regularization, dictionary-

based `1−regularization and dictionary-based `1/2−regularization, respectively. The
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PSF for polysilicon structures with α = 2.53 from Section 3.2.2 was used in the

reconstruction framework. Both observation data and all the reconstructions are

shown with the same amplitude scale. Horizontal and vertical cross sections from

the middle section are plotted in Fig. 5·14 to compare reconstruction techniques and

to show resolution improvement with respect to the observation. All reconstruction

techniques provided enhancement in terms of edge resolution; the cross sections show

that the edges became shaper. The dictionary-based technique shows a smoothness

loss around the corners. The reason for this is the rounding around the corners in

the fabrication process. The highest contrast is provided by the dictionary-based

`1/2−regularization.
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Figure 5·12: CNN-shaped polysilicon resolution target observation
data with (a) x−polarized input light (b) y−polarized input

The aSIL data with x−polarized and y−polarized input light are shown in

Figs. 5·15a and 5·15b for 282nm pitch lines, in Figs. 5·16a and 5·16b for 252nm

pitch lines, and in Figs. 5·17a and 5·17b for 224nm pitch lines. Clearly, the 252nm

and 224nm pitch lines are not localized in the observation data. The non-quadratic

regularization reconstructions are shown in Figs. 5·18a, 5·19a and 5·20a. There are

some oscillations in the background, but the number of lines and the thickness of

the lines for 282nm and 252nm pitch lines match the SEM data. The non-quadratic

regularization reconstruction for 224nm pitch vertical lines is at the limit of local-
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Figure 5·13: CNN-shaped polysilicon resolution target reconstruc-
tion results with (a) non-quadratic regularization (b) dictionary-based
`1−regularization (c) dictionary-based `1/2−regularization.

ization, and some of the horizontal lines cannot be localized. The reason for this

is the defect in fabrication of horizontal lines. This defect can be seen in the SEM

image in Fig. 5·11d. The localization accuracy and resolution are improved by the

dictionary-based reconstruction techniques compared to the non-quadratic regular-

ization reconstruction. The results for dictionary-based `1−regularization are shown

in Figs. 5·18b, 5·19b and 5·20b and the ones for dictionary-based `1/2−regularization

are shown in Figs. 5·18c, 5·19c and 5·20c. For all reconstruction techniques a PSF

with α = 2.53 from Section 3.2.2 was used for the 282nm and 252nm pitch lines and

PSF with α = 2.43 was used for the 224nm pitch lines. Imperfections in the defect re-

gions started to appear in the dictionary-based `1/2−regularization for horizontal lines

of 224nm pitch. The comparison of horizontal and vertical cross sections from the

observation data and all reconstructions techniques is shown in Figs. 5·21, 5·22 and

5·23. The cross sections show that the best resolution is achieved by the dictionary-

based `1/2−regularization for all the lines data. However, we need to note that the

computation time and the memory requirements are much higher for dictionary-based

regularization than for non-quadratic regularization.
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Figure 5·14: Cross sections from the observation and reconstructions
for CNN-shaped polysilicon resolution target (a) horizontal (b) vertical
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Figure 5·15: Observation data of resolution target of aluminum lines
with 282nm pitch (a) x−polarized input light (b) y−polarized input
light
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Figure 5·16: Observation data of resolution target of aluminum lines
with 252nm pitch (a) x−polarized input light (b) y−polarized input
light
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Figure 5·17: Observation data of resolution target of aluminum lines
with 224nm pitch (a) x−polarized input light (b) y−polarized input
light
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Figure 5·18: Reconstruction results of the resolution target of
aluminum lines with 282nm separation (a) non-quadratic regular-
ization, (b) dictionary-based `1−regularization, (c) dictionary-based
`1/2−regularization.
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Figure 5·19: Reconstruction results of the resolution target of
aluminum lines with 252nm separation (a) non-quadratic regular-
ization, (b) dictionary-based `1−regularization, (c) dictionary-based
`1/2−regularization.
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Figure 5·20: Reconstruction results of the resolution target of
aluminum lines with 224nm separation (a) non-quadratic regular-
ization, (b) dictionary-based `1−regularization, (c) dictionary-based
`1/2−regularization.
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Figure 5·21: Cross sections from observation data and reconstructions
for aluminum lines resolution target for 282nm pitch (a) horizontal (b)
vertical
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Figure 5·22: Cross sections from observation data and reconstructions
for aluminum lines resolution target for 252nm pitch (a) horizontal (b)
vertical
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Figure 5·23: Cross sections from observation data and reconstructions
for aluminum lines resolution target for 224nm pitch (a) horizontal (b)
vertical

5.3 Initialization of dictionary-based `1/2−regularization

The sparse dictionary-based reconstruction problem, which is an lp−regularization

problem, given in Eq. 5.4 has a non-convex cost function for p < 1. This means

that there is no guarantee of reaching a global minimum. For this reason, it is ben-

eficial to compare reconstruction results for different initializations. In this section,

we compare reconstruction results of dictionary-based l1/2−regularization for two dif-

ferent initialization cases: the initialization with the result of l1−regularization and

the initialization with ”all ones” coefficient vector, η0 = 1. We used the simulated

observation from Section 5.2.1 and the experimental data of aluminum lines resolu-

tion target from Section 5.2.2. The reconstructions from simulated observations of

Phantom 1 are shown in Fig. 5·25 and the reconstructions from simulated observa-

tions of Phantom 2 are shown in Fig. 5·24. The MSE plots in Figs. 5·27 and 5·26

show a quantitative comparison of reconstructions resulting from the two initializa-

tions for a single realization. The reconstruction results with different initializations
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from experimental data are given in Figs. 5·28, 5·29 and 5·30. We observe that the

initialization does not have a significant impact on the reconstruction performance

for simulated data. The initialization with the result of l1−regularization produces

slightly better results. For experimental data, different initializations result in similar

reconstruction results for lines with 282nm separation.

5.4 Conclusions

In this chapter, we proposed a synthesis-based sparse representation framework us-

ing overcomplete dictionaries for image enhancement and resolution improvement

of backside aSIL imaging of integrated circuits. The predetermined overcomplete

dictionary-based sparse signal representation framework poses strong priors for un-

derlying IC structures and subsequently improves resolution in image reconstruction.

The framework incorporates polarization properties of high-NA optical systems using

vectorial optics and electromagnetic analysis for PSF modeling and enables fusion

of multiple polarization observations to benefit from improved resolution in each set

of observation data. Dictionary-based image reconstruction techniques are particu-

larly suitable for IC imaging because predetermined dictionaries can be built using

the information stored in CAD layouts. Additionally, since the building blocks of

structures in ICs come from a limited set, mostly line segments of varying width

and length, dictionary blocks pose strong priors for the reconstructed scene. Hence,

enforcing sparsity on the dictionary coefficients, the resolution can be significantly

improved. The proposed framework was validated on simulated data and different

sparse reconstruction approaches have been compared for different levels of noise.

This study is crucial to evaluate the robustness of the framework to noise level since

some modalities in IC imaging have higher levels of noise, such as LVI. We have also

shown resolution improvement in experimental aSIL data. One disadvantage of the
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Figure 5·24: l1/2−regularization reconstruction results of Phantom 2
observations with different initializations: ”all ones” initialization (a)
10 dB (c) 16 dB (e) 20 dB (g) 25 dB, initialization with the result of
l1−regularization (b) 10 dB (d) 16 dB (f) 20 dB (h) 25 dB.
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Figure 5·25: l1/2−regularization reconstruction results of Phantom 1
observations with different initializations: ”all ones” initialization (a)
10 dB (c) 16 dB (e) 20 dB (g) 25 dB, initialization with the result of
l1−regularization (b) 10 dB (d) 16 dB (f) 20 dB (h) 25 dB
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Figure 5·26: Comparison of MSE values for reconstructions from
Phantom 1 observations for a single realization
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Figure 5·27: Comparison of MSE values for reconstructions from
Phantom 2 observations for a single realization
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Figure 5·28: l1/2−regularization reconstruction results of 282nm sep-
aration lines data with different initializations: (a) all ones initialization
(b) initialization with the result of l1−regularization
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Figure 5·29: l1/2−regularization reconstruction results of 252nm sep-
aration lines data with different initializations: (a) all ones initialization
(b) initialization with the result of l1−regularization
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Figure 5·30: l1/2−regularization reconstruction results of 224nm sep-
aration lines data with different initializations: (a) all ones initialization
(b) initialization with the result of l1−regularization

technique compared to analysis-based approach in Chapter 4 is the computation time

and memory requirements, especially when the scene gets more complex.
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Chapter 6

Imaging active integrated circuits with 3D

dictionaries for laser voltage imaging

Laser voltage imaging (LVI) (Yurt et al., 2012; Ng et al., 2010) is an optical backside

FA technique that produces images of active regions in ICs. It is derived from the

LVP measurement technique (Heinrich et al., 1986; Kindereit et al., 2008; Kindereit

et al., 2007) that measures the modulations at a single location of the IC over time.

These modulations are caused by the change in carrier densities below the gate and

drain as the applied voltage varies over time. A review of these techniques was

provided in Sections 2.2.1 and 2.2.2. Since the LVP signal is very noisy, multiple

cycles are collected and averaged in order to increase SNR. This significantly increases

the measurement time. On the other hand, LVI is a frequency-domain measurement

and it records the amplitude and the phase of the first harmonic. Since the noise is

white and spread to all frequencies, there is no requirement for averaging. Only the

first harmonic is collected because the applied voltage is a periodic square wave with a

known frequency. Therefore, the laser beam can be raster scanned in order to collect

measurements from an area, producing images of the amplitude of the first harmonic

and of the phase of the first harmonic. In order to create an image, where active

regions are indicated, single harmonic is enough. On the other hand, there is also the

second harmonic technique through which duty cycle degradation faults are detected

by collecting the magnitude and the phase of the second harmonic (Celi et al., 2012).

The experimental setup for LVI measurements is shown in Fig. 2·3. For each scan
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point, a laser beam is focused by a high-NA optical system and the reflected light can

be expressed as R(x, y, t) = R0(x, y) + ∆R(x, y, t), where R0(x, y) is the measured

reflection from the static parts and ∆R(x, y, t) is the modulated part of the reflected

light coming from active regions. The first harmonic of the modulating part gives

the LVI data for each scan position whereas the constant part (DC component) gives

the reflection from static components. Therefore, LVI data is registered with optical

images of the static components. It also has the same resolution properties as the

images of static components.

In this chapter, our goal is to formulate a synthesis-based sparse representation

framework for LVI. For this purpose, we first propose collecting measurements at

multiple harmonics. Most of the energy is in the first harmonic because the applied

voltage is a periodic square wave. However, energy in other harmonics is required

in order to determine time signature of active regions, such as duty cycle, phase

shift. We design overcomplete 3D dictionaries, one in space-time and one in space-

frequency, in order to sparsely represent the multiple harmonics LVI data. These

dictionaries are built according to properties of the modulation which depend on the

applied voltage and the dimensions of the gate and drain regions obtained from CAD

layouts. We propose a reconstruction framework based on this sparse representation

in order to increase the spatial resolution of LVI data and to recover the switching

behavior over time in different regions in the field of view. The PSF model based on

Green’s approach from Section 3.2.2 is used in order to model the spatial blur because

LVI measurements are taken with the same high-NA system with linearly-polarized

input light.

In Section 6.1, we introduce two different sparse representations based on two

different 3D dictionaries, one in space-time and the other in space-frequency. In

Section 6.2 we explain how we have built these 3D dictionaries. In Section 6.3,
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we present simulated-data experiments. Section 6.4 summarizes and concludes this

chapter.

6.1 Sparse representation framework for multiple-harmonics

LVI

The voltage applied to the IC is periodic and results in periodic modulations in active

regions. The blurry and noisy modulations in space and time can be expressed as:

τ j(x, y, t) = mj
b(x, y, t) + wj(x, y, t), (6.1)

where

mj
b(x, y, t) = hj(x, y) ∗m(x, y, t), (6.2)

wj(x, y, t) ∼ N (0,mj
b(x, y, t)), (6.3)

m(x, y, t) is the underlying modulation, hj(x, y) is the PSF of the high NA imaging

system illuminated by linearly polarized input light with polarization direction j and

wj(x, y, t) is the noise in the system. LVI measures the modulation in the frequency

domain. The complex-valued harmonics can be expressed as:

djk,l =
1

T

∫
<T>

τ jk(t)e−ilw0t dt, (6.4)

where k indicates the scan position in space where the laser beam is focused, T is

the period of the periodic modulation and w0 is the fundamental frequency. Then,

the observed harmonics LVI data can be collected in vector dj whose amplitude and

phase can be expressed as |dj| and ∠dj, respectively. We have two different sparse

representations: one in space-frequency and one in space-time. In space-frequency,

we represent the Fourier series coefficients of the underlying modulation m(x, y, t) in
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terms of an overcomplete 3D space-frequency dictionary. In space-time, the underly-

ing modulation m(x, y, t) is represented in terms of an overcomplete 3D space-time

dictionary. Details of these representations and the reconstruction framework are

explained in the following sections.

6.1.1 Frequency-domain sparse representation

The Fourier series coefficients of the underlying modulationm(x, y, t) can be expressed

as follows:

ck,l =
1

T

∫
<T>

mk(t)e
−ilw0t dt, (6.5)

where k indicates the scan position and l is the harmonic number. The overcom-

plete dictionary-based representation in space-frequency is expressed as:

c = Φwηw, (6.6)

where Φw is the predetermined space-frequency dictionary and ηw is the vector of

representation coefficients.

Then the sparse space-frequency dictionary-based reconstruction problem becomes:

η̂w = arg min
ηw

N∑
j=1

‖dj −HjΦwηw‖22 + λ‖ηw‖1, (6.7)

where N is the number of polarization directions, j indicates the polarization direc-

tion, Hj is the Toeplitz matrix that implements the convolution as a matrix operation.

The estimated Fourier series coefficients for the underlying modulation become:

ĉ = Φwη̂w. (6.8)

Note that since the variables in the optimization problem in Eq. 6.7 are complex,

the interior-point algorithm that we used in Chapter 5 to solve dictionary-based
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reconstruction for real-valued problems does not apply here. Therefore, we used the

quasi-Newton method (Çetin and Karl, 2001) explained in detail in Chapter 4 to solve

the minimization problem.

6.1.2 Time-domain sparse representation

In order to use a space-time dictionary-based representation, the Fourier series ex-

pansion of the observed harmonics is used in order to generate the corresponding time

domain observations:

τ̂ jk(t) =
L∑
l=1

2|djk,l|cos(lw0t+ ∠djk,l) (6.9)

These time domain observations contain the effects of the noise and the blurring since

the spectrum observations also do. For computations, this signal is discretized in time

to obtain a vector of discrete estimated noisy and blurry modulations in space and

time: τ̂ j. The sparse representation in space-time can be expressed as:

m = Φtηt, (6.10)

where m contains the vectorized discrete underlying modulations. Then, the sparse

space-time dictionary-based reconstruction problem becomes:

η̂t = arg min
ηt

N∑
j=1

‖τ̂ j −HjΦtηt‖22 + λ‖ηt‖1, (6.11)

The estimated underlying modulation is the obtained from η̂t as follows:

m̂ = Φtη̂t. (6.12)
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6.2 Constructions of dictionaries

Spatially, the dictionaries are constructed by the same procedure as the dictionaries

are constructed in Section 5.1.3. The spatial regions where the modulations are ob-

served are flat regions consisting of horizontal and vertical lines of constrained and

varying width and length. These regions can be obtained from the CAD layouts.

Spatially, all possible locations of different-size rectangles are included into the dic-

tionary. Fig. 6·1 shows an example of a CAD layout from an inverter. Fig.6·2 shows

the gate and drain regions where the modulations are observed.

Figure 6·1: CAD layout of an inverter

We also need to include all possible time signatures or frequency signatures of

the modulations. The applied voltage is a periodic square wave. Therefore, the

modulations in time can be approximated as a periodic square wave ignoring the rise

time and fall time. Depending on the circuit element of interest, the modulations will

have the same period as the applied voltage or the period of the modulations will

be a multiple of the period of the applied voltage. Additionally, depending on the

circuit element, the modulations can be in phase with the applied voltage or there

might be time shift. All possible periods and all possible time shifts should also be

included in the dictionary. For the time dictionary, each region with different width
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Figure 6·2: Active regions of the inverter, red: n-gate, dark green:
p-gate, light green: n-drain, blue: p-drain

and height will also have a third dimension with all possible time signatures, in other

words all possible periods and time shifts. Then, each column of the overcomplete

time dictionary is the vectorized version of a 3D space-time behavior block where a

region with fixed width and height has the same rectangular pulse with a given period

and a given time shift. For the frequency dictionary, the Fourier series coefficients

of all possible rectangular pulses are used to determine the third dimension of the

dictionary elements. The Fourier series coefficients of the rectangular pulse train in

Fig. 6·3 can be expressed as:

cl =
AT1
T0

sinc(lw0T1)e
−iπlw0T1 . (6.13)

We use this expression in order to calculate the third dimension of space-frequency

dictionaries.
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Figure 6·3: A rectangular pulse

6.3 Simulated-data experiments

Our goal in this section is to test the performance of the proposed framework in

a controlled experiment. Therefore, we designed an experiment where simulated

LVI data of an inverter is created using the modeled PSF from Section 3.2.2 and

the CAD layout of a 32nm process node device. The CAD layout for this inverter

is shown in Fig. 6·1. There are 8 different rectangular regions where modulations

are observed when the device is operational corresponding to the gate and drain

regions. The modulations in the gate regions are stronger than the modulations in

the drain regions because of the differences in free carrier densities. Amplitudes of

modulations for all scan positions for two time points are shown in Figs 6·4 and 6·5

and modulations in time for 4 different scan positions are shown in Figs. 6·6. These

4 different scan positions are marked with colored dots in Fig. 6·4. We simulated LVI

data using the observation model from Eq. 6.3. The amplitude and phase of the first 5

harmonics are shown in Figs. 6·7, 6·8, 6·9, 6·10, 6·11 for linearly-polarized illumination

with x−polarization and in Figs. 6·12, 6·13, 6·14, 6·15, 6·16 for linearly-polarized

illumination with y−polarization. The PSF in Fig. 3·5e is used in all simulations.

All the amplitude data are shown in the same scale and all the phase data are shown

on the same scale. The noise level is simulated according to characteristics of the

experimental system. The variance of the noise scales with the amplitude of the total

reflected light as given in Eq. 6.3 and the modulated part is 600 parts per million
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compared to the total reflected light.
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Figure 6·4: Amplitude of modulation for all scan positions at time
t = 0.02; colored dots mark scan position of the time plots: green
p-type drain, blue p-type gate, purple n-type drain, pink n-type gate
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Figure 6·5: Amplitude of modulation for all scan positions at time
t = 0.07
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Figure 6·6: Modulations over time at single scan position, (a) p-type
drain, (b) p-type gate, (c) n-type drain, (d) n-type gate.
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Figure 6·7: (a) Amplitude and (b) phase of the 1st harmonic for
linearly-polarized input light in x−direction.



106

µm

µ
m

 

 

0 0.5 1 1.5

0

0.2

0.4

0.6
2

4

6

8

10

(a)

µm

µ
m

 

 

0 0.5 1 1.5

0

0.2

0.4

0.6
−2

0

2

(b)

Figure 6·8: (a) Amplitude and (b) Phase of the 2nd harmonic for
linearly-polarized input light in x−direction.
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Figure 6·9: (a) Amplitude and (b) phase of the 3rd harmonic for
linearly-polarized input light in x−direction.
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Figure 6·10: (a) Amplitude and (b) phase of the 4th harmonic for
linearly-polarized input light in x−direction.
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Figure 6·11: (a) Amplitude and (b) phase of the 5th harmonic for
linearly-polarized input light in x−direction.
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Figure 6·12: (a) Amplitude and (b) phase of the 1st harmonic for
linearly-polarized input light in y−direction.
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Figure 6·13: (a) Amplitude and (b) phase of the 2nd harmonic for
linearly-polarized input light in y−direction.
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Figure 6·14: (a) Amplitude and (b) phase of the 3rd harmonic for
linearly-polarized input light in y−direction
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Figure 6·15: (a) Amplitude and (b) phase of the 4th harmonic for
linearly-polarized input light in y−direction
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Figure 6·16: (a) Amplitude and (b) phase of the 5th harmonic for
linearly-polarized input light in y−direction
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We performed reconstructions with both space-frequency dictionaries and space-

time dictionaries using all 5 harmonics, only 3 harmonics and only the first harmonic.

Reconstruction results with space-frequency sparse representation using all 5 harmon-

ics are shown in Figs. 6·17, 6·18, 6·19, 6·20 and 6·21. Figs. 6·22, 6·23 and 6·24 present

results using only the first 3 harmonics and results only using the first harmonic are

shown in Fig. 6·25. In order to assess the performance of the sparse representation,

the ground truth LVI data of a system with no noise and no blur is simulated and

it is shown in Figs. 6·26, 6·27, 6·28, 6·29 and 6·30. Fig. 6·31 compares vertical cross

sections from reconstructions, observations and the ground truth data. The sparse re-

construction was able to recover gate drain regions which were blurred and merged in

the observations. Hence, the sparse representation framework increases the resolution

and localization accuracy according to Sparrow criterion. Using fewer harmonics did

not decrease the reconstruction performance significantly. The reconstruction results

using all 5 harmonics and only 3 harmonics are almost equivalent. In Fig. 6·32, the

MSE for the first harmonic of the reconstructions is plotted. The error bars are cal-

culated over 10 realizations. The MSE values are very similar. Using fewer harmonics

does not decrease the reconstruction performance. However, in the case of an inverter

the modulations come from a limited set, for a more complex circuit element, there

might be different periods and more phase shift. In such a scenario, the number of

harmonics used can affect the reconstruction performance.
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Figure 6·17: (a) Amplitude and (b) phase of the 1st harmonic of the
reconstruction result of space-frequency sparse representation using all
5 harmonics. Phase values corresponding to amplitudes lower than 1
are set to 0.
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Figure 6·18: (a) Amplitude and (b) phase of the 2nd harmonic of the
reconstruction result of space-frequency sparse representation using all
5 harmonics. Phase values corresponding to amplitudes lower than 1
are set to 0.
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Figure 6·19: (a) Amplitude and (b) phase of the 3rd harmonic of the
reconstruction result of space-frequency sparse representation using all
5 harmonics. Phase values corresponding to amplitudes lower than 1
are set to 0.



119

µm

µ
m

 

 

0 0.5 1 1.5

0

0.2

0.4

0.6
0

10

20

(a)

µm

µ
m

 

 

0 0.5 1 1.5

0

0.2

0.4

0.6
−2

0

2

(b)

Figure 6·20: (a) Amplitude and (b) phase of the 4th harmonic of the
reconstruction result of space-frequency sparse representation using all
5 harmonics. Phase values corresponding to amplitudes lower than 1
are set to 0.



120

µm

µ
m

 

 

0 0.5 1 1.5

0

0.2

0.4

0.6
0

10

20

(a)

µm

µ
m

 

 

0 0.5 1 1.5

0

0.2

0.4

0.6
−2

0

2

(b)

Figure 6·21: (a) Amplitude and (b) phase of the 5th harmonic of the
reconstruction result of space-frequency sparse representation using all
5 harmonics. Phase values corresponding to amplitudes lower than 1
are set to 0.
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Figure 6·22: (a) Amplitude and (b) phase of the 1st harmonic of the
reconstruction result of space-frequency sparse representation using 3
harmonics. Phase values corresponding to amplitudes lower than 1 are
set to 0.
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Figure 6·23: (a) Amplitude and (b) phase of the 2nd harmonic of the
reconstruction result of space-frequency sparse representation using 3
harmonics. Phase values corresponding to amplitudes lower than 1 are
set to 0.
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Figure 6·24: (a) Amplitude and (b) phase of the 3rd harmonic of the
reconstruction result of space-frequency sparse representation using 3
harmonics. Phase values corresponding to amplitudes lower than 1 are
set to 0.
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Figure 6·25: (a) Amplitude and (b) phase of the 1st harmonic of
the reconstruction result of space-frequency sparse representation using
only 1st harmonic. Phase values corresponding to amplitudes lower
than 1 are set to 0.
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Figure 6·26: (a) Amplitude and (b) phase of the 1st harmonic of the
ground truth
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Figure 6·27: (a) Amplitude and (b) phase of the 2nd harmonic of the
ground truth
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Figure 6·28: (a) Amplitude and (b) phase of the 3rd harmonic of the
ground truth
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Figure 6·29: (a) Amplitude and (b) phase of the 4th harmonic of the
ground truth
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Figure 6·30: (a) Amplitude and (b) phase of the 5th harmonic of the
ground truth
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Figure 6·31: Comparison of the vertical cross sections of the ampli-
tude of the first harmonic: (a) p-type transistor, (b) n-type transistor.
The cross sections for all 5 harmonics reconstruction and only 3 har-
monics reconstruction overlap.
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Figure 6·32: The MSE for the first harmonic of the reconstructions
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We also performed reconstructions with a space-time representation. Eq. 6.9 is

used in order to represent the original observation data in time with Fourier series ex-

pansion. The time domain is discretized to produce 10 samples both for time-domain

representation of the LVI observation and for the elements of the space-time dictio-

nary. Three different estimations of time-domain modulation are calculated: using

all 5 harmonics, using only the first 3 harmonics and using only the first harmonic.

The observations for all scan positions at two different times are shown in Figs. 6·33,

6·34, 6·35, 6·36, 6·37 and 6·38. Modulation over time for scan positions specified

in Fig. 6·4 are shown in Figs. 6·39, 6·40, 6·41, 6·42, 6·43 and 6·44. The results for

sparse space-time representation using all 5 harmonics for all scan positions at two

different time points are shown in Fig. 6·45 and the reconstructed modulation over

time at 4 different scan positions is shown in Fig. 6·46. The results of reconstruction

using only 3 harmonics are shown in Fig. 6·47 for all scan positions at two different

times and in Fig. 6·48 over time at 4 different scan positions. Similarly, the results

of the sparse space-time representation using only the first harmonic are presented in

Figs. 6·49 and 6·50. The gate and drain regions are not localized in the observation

data whereas they are localized in sparse space-time representation results. In addi-

tion to resolution improvement in space, the reconstructed modulation is also sharp

in time because the space-time dictionary elements are composed of square waves in

the time. Fig. 6·51 compares vertical cross sections from reconstructions, observations

and the ground truth data. In Fig. 6·52, the mean of MSE values for the space slice

at time t = 0.02 and for the space slice at time t = 0.07 of the reconstructions is

plotted.
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Figure 6·33: Amplitude of observed modulation (Fourier series expan-
sion of 5 harmonics) in all scan positions for x−polarized input light
(a)at time point t = 0.02 (a)at time point t = 0.07
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Figure 6·34: Amplitude of the observed modulation (Fourier series
expansion of 5 harmonics) at all scan positions for y−polarized input
light (a) at time t = 0.02, (b) at time t = 0.07.
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Figure 6·35: Amplitude of the observed modulation (Fourier series
expansion of 3 harmonics) at all scan positions for x−polarized input
light (a) at time t = 0.02, (b) at time t = 0.07.
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Figure 6·36: Amplitude of the observed modulation (Fourier series
expansion of 3 harmonics) at all scan positions for y−polarized input
light (a) at time t = 0.02, (b) at time t = 0.07.
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Figure 6·37: Amplitude of the oberved modulation (Fourier series
expansion of 1 harmonic) at all scan positions for x−polarized input
light (a) at time t = 0.02, (b) at time t = 0.07.
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Figure 6·38: Amplitude of the observed modulation (Fourier series
expansion of 1 harmonic) at all scan positions for y−polarized input
light (a) at time t = 0.02, (b) at time t = 0.07.
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Figure 6·39: Observed modulations (Fourier series expansion of 5
harmonics) over time at a single scan position: (a) p-type drain, (b)
p-type gate, (c) n-type drain, (d) n-type gate for x−polarized input
light.
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Figure 6·40: Observed modulations (Fourier series expansion of 5
harmonics) over time at a single scan position: (a) p-type drain, (b)
p-type gate, (c) n-type drain, (d) n-type gate for y−polarized input
light.
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Figure 6·41: Observed modulations (Fourier series expansion of 3
harmonics) over time at a single scan position: (a) p-type drain, (b)
p-type gate, (c) n-type drain, (d) n-type gate for x−polarized input
light.
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Figure 6·42: Observed modulations (Fourier series expansion of 3
harmonics) over time at a single scan position: (a) p-type drain, (b)
p-type gate, (c) n-type drain, (d) n-type gate for y−polarized input
light.
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Figure 6·43: Observed modulations (Fourier series expansion of 1
harmonic) over time at a single scan position: (a) p-type drain, (b)
p-type gate, (c) n-type drain, (d) n-type gate for x−polarized input
light.
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Figure 6·44: Observed modulations (Fourier series expansion of 1
harmonic) over time at a single scan position: (a) p-type drain, (b)
p-type gate, (c) n-type drain, (d) n-type gate for y−polarized input
light.
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Figure 6·45: Amplitude of the reconstructed modulation (using all
5 harmonics) for all scan positions (a) at time t = 0.02 (b) at time
t = 0.07.
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Figure 6·46: Reconstructed modulation (using all 5 harmonics) over
time at a single scan position: (a) p-type drain, (b) p-type gate, (c)
n-type drain, (d) n-type gate.
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Figure 6·47: Amplitude of the reconstructed modulation (using only
first 3 harmonics) for all scan positions (a) at time t = 0.02, (b) at time
t = 0.07.
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Figure 6·48: Reconstructed modulation (using only first 3 harmonics)
over time at a single scan position: (a) p-type drain, (b) p-type gate,
(c) n-type drain, (d) n-type gate.
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Figure 6·49: Amplitude of the reconstructed modulation (using only
first harmonic) for all scan positions (a) at time t = 0.02, (b) at time
t = 0.07.
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Figure 6·50: Reconstructed modulation (using only first harmonic)
over time at a single scan position: (a) p-type drain, (b) p-type gate,
(c) n-type drain, (d) n-type gate.
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Figure 6·51: Comparison of vertical cross sections of all scan positions
data at time point t = 0.02 (a)from p-type transistor (b) from n-type
transistor. The cross sections for all 5 harmonics reconstruction and
only 3 harmonics reconstruction almost overlap.
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Figure 6·52: The mean MSE for the reconstruction amplitude at all
scan positions at time point t = 0.02 and t = 0.07



151

6.3.1 Comparison of space-frequency representation and space-time rep-

resentation results

In this section, we compare the performance of space-frequency representation and

space-time representation. However, the reconstructions are in two different domains

and the MSE values are not comparable since the amplitude ranges are different and

space-frequency representations are complex-valued. Therefore, we used Fourier series

expansion in order to represent the results of space-frequency representation in time

domain. Figs. 6·53 and 6·54 compare the amplitudes for all scan positions at times

t = 0.02 and t = 0.07 for the reconstructions using all 5 harmonics. Fig. 6·55 compares

reconstructed modulations in time at 4 different scan positions. Additionally, vertical

cross sections from at t = 0.02 are compared in Fig. 6·56.

Both the sparse space-time representation and the sparse space-frequency repre-

sentation were able to recover spatial regions where modulations were observed. They

are also able to changes in behavior over time. For both methods, the regularization

parameter is chosen by an exhaustive search. The best parameter is chosen as the

one giving the best best resolution qualitatively. In order to assess localization ac-

curacy of time modulation, we clustered scan positions into 3 different regions with

different time behavior: no modulation (non-active regions), rectangular pulse with

phase 0 and rectangular pulse with phase π. We used k-means clustering technique

(Späth, 1985). We also clustered the raw simulated LVI data in order to show the

increase in localization accuracy through the proposed sparse representation. The

underlying true clusters are shown in Fig. 6·57. The clustering results for LVI data

are shown in Figs. 6·58. The clustering results for sparse representations are given in

Fig. 6·59. We also calculated a localization accuracy metric defined as the percent-

age of the number of scan positions with the wrong cluster label divided by the total

number of scan positions. The bar plot in Fig. 6·60 compares the localization error for
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Figure 6·53: Comparison of amplitudes of the reconstructed modula-
tion for all scan positions at time t = 0.02 (a) space-time representation
(b) space-frequency representation

raw LVI observation data, sparse space-time representation results and sparse space-

frequency representation results. The error bars are calculated over 10 realizations.

The localization accuracy of the both representations are on the same level showing

a significant increase in localization accuracy compared to LVI observation data. For

an inverter, there are only 3 clusters for modulation behavior in time. However, for

more complex circuit element, the number of clusters can be higher. Even though

increasing the number of harmonics does not have higher localization accuracy for

the inverter, for a more complex elements increasing number of harmonics might be
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Figure 6·54: Comparison of amplitudes of the reconstructed modula-
tion for all scan positions at time t = 0.07 (a) space-time representation
(b) space-frequency representation

required to increase localization accuracy.

We should also point out that the computation time and memory requirements

is independent of number of harmonics used for space-time representation. However,

using fewer number of harmonics in space-frequency representation also decreases the

computation time and the memory requirement, because the size of the observation

data and the overcomplete dictionary decreases.
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Figure 6·55: Comparison of the reconstructed modulations over time
at a single scan position: (a) p-type drain, (b) p-type gate, (c) n-type
drain, (d) n-type gate.
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Figure 6·56: Comparison of vertical cross sections of all scan positions
at time t = 0.02: (a) p-type transistor, (b) n-type transistor.
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Figure 6·57: True cluster labels for the underlying modulation
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Figure 6·58: Cluster labels of LVI data under linearly-polarized light
in x−direction: (a) 5 harmonics (c) 3 harmonics (e) 1 harmonic, under
linearly-polarized light in y−direction:(b) 5 harmonics (d) 3 harmonics
(f) 1 harmonic
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Figure 6·59: Cluster labels for sparse space-time representation: (a)
5 harmonics (c) 3 harmonics (e) 1 harmonic, sparse space-frequency
representation: (b) 5 harmonics (d) 3 harmonics (f) 1 harmonic.
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Figure 6·60: Comparison of localization accuracy

6.4 Conclusion

In this chapter, sparse space-frequency and space-time representations based on over-

complete dictionaries were proposed in order to increase spatial resolution and lo-

calization accuracy of optical measurements of device activity, specifically LVI mea-

surements. The proposed framework was validated on simulated data. The sparse

representation enables recovery of different regions with different time signatures.

Scan positions can be clustered into regions with different time behavior using the

reconstruction results of sparse representation whereas clustering results using LVI

measurements without sparse representation does not produce accurate cluster la-

bels. Localization accuracy for the two sparse representations, space-time and space-

frequency, was almost equivalent.
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Chapter 7

Application of resolution enhancement

techniques to dark-field subsurface

microscopy of integrated circuits

The highest possible resolution is achieved by imaging through the silicon substrate

using aSILs with effective NA approaching the index of the substrate (NA u 3.5)

(Köklü et al., 2008). One important property at high NA is that the reflected light

from the silicon-dielectric interface is comparable in magnitude to the scattered light

from small objects in the dielectric medium, resulting in low-contrast images. In

order to increase the contrast of images, a polarization-sensitive dark-field microscopy

has been proposed and modeled that successfully suppresses the strong background

reflection and increases both contrast and resolution (Yurt et al., prep).

We can use sparse image reconstruction techniques to recover spatial high-frequency

information from low-resolution observations. We proposed frameworks applying

these techniques to high-NA microscopy images in Chapters 4 and 5. These frame-

works combine prior knowledge about ICs with physics-based optical forward model

and recover spatial high-frequency information, which is typically lost in low-resolution

observations. In this chapter, we propose a signal processing framework in order to

estimate the PSF of dark-field subsurface microscopy system from observation data

because for dark-field subsurface microscopy the PSF model is different than regular

subsurface microscopy. We incorporate this PSF into an image reconstruction frame-

work, which can be formulated using two different image reconstruction techniques,
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an analysis-based sparsity paradigm from Chapter 4 and a synthesis-based sparsity

paradigm using overcomplete dictionaries from Chapter 5. Both of these techniques

take advantage of the prior knowledge about ICs. We demonstrate on experimental

data that the synthesis-based image reconstruction provides better image enhance-

ment and higher resolution than the analysis-based based image reconstruction.

7.1 Dark-field subsurface microscopy for integrated circuits

The goal of dark-field subsurface microscopy is to increase resolution and contrast by

suppressing the strong background reflection. An aSIL confocal microscope is modi-

fied by adding a linear polarizer and a quarter wave plate prior to the objective lens

to allow us to selectively filter the background light that has specularly reflected from

the dielectric interface of silicon and the low-index medium (see Fig. 7·1). This simple

implementation of the polarization-sensitive optics allows one to virtually eliminate

the background signal creating a dark-field image. Fig. 7·2 shows a comparison of a

typical confocal and corresponding dark-field subsurface confocal microscope image

of aluminum lines fabricated on a double-side polished silicon wafer. In the typical

case, there is a strong reflection from the background, which significantly dimin-

ishes the visibility of features as shown in Fig. 7·2a . In the dark-field case, the

specularly-reflected circularly-polarized light is filtered after traversing the quarter

wave plate and linear polarizer. The resulting image is largely free of background and

the visibility of the small features is enhanced significantly. We advance this tech-

nique by applying image reconstruction algorithms developed earlier in this thesis to

background-suppressed subsurface images.
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Figure 7·1: Confocal microscope setup. (Collimated beam from
1310nm laser; GM galvanometric mirror; LP linear polarizer; QWP
quarter-wave plate; aSIL aplanatic solid immersion lens; pinhole is
10nm

7.2 Image reconstruction framework

The image reconstruction framework is composed of two steps. The first step in-

volves the estimation of the PSF of the system from observed images since the PSF

for dark-field subsurface microscopy is different from the one for regular subsurface

microscopy. In the second step, we formulate an image reconstruction formulation

using the estimated PSF in a linear forward model together with regularizers that

incorporate prior information about the features of interest.

Two different formulations are proposed according to how prior knowledge about

the integrated circuits is incorporated into image reconstruction. The first formula-

tion, used in Chapter 4, assumes that IC images are sparse and they are composed of

piecewise-constant regions. This assumption relies on ICs being composed of small

lines and small rectangular structures. We can incorporate this information into the

reconstruction by means of non-quadratic regularization functionals in the image re-

construction formulation. Therefore, we can preserve the sparsity and the edges of

the underlying features.
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(a) (b)

(c)

Figure 7·2: (a) Metal lines separated by 252nm, 282nm on a resolu-
tion target, imaged using 1310nm circular polarization without linear
polarizer in the return path. (b) The same set of metal lines imaged
with a linear polarizer and quarter wave plate in place. (c) The inten-
sity profile corresponding to dashed lines in (a) and (b). The dashed
line is for circularly-polarized illumination, and the solid line is for the
case of linear polarizer and quarter wave plate inserted (b).
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Our second approach uses CAD layouts in order to build an overcomplete dictio-

nary of rectangular building blocks, which vary in their size and in location. This

dictionary can be incorporated into a sparse image reconstruction as proposed in

Chapter 5.

7.2.1 PSF Estimation and Observation Model

Figure 7·3: Locations of cross sections used to estimate the LSF of
the system.

In this section, we explain how we estimate the PSF of the optical system and

how we employ this PSF in order to formulate an optical forward model. The cross

sections, as seen in Fig. 7·3, along the lines from the center part can be used in order

to estimate the Line Spread Function (LSF) of the system. We collect multiple cross

sections from different lines in the observation and we fit a spline to the average of

these cross sections using a least squares spline approximation. The derivative of this

estimated function will give us the estimated Line Spread Function of the system.

However, since the lines are thin, boundary effects result in spurious artifacts in the

waist of the estimated LSF. In order to filter these imperfections out, we approximate

the LSF with an Airy disk. We use this as is the estimated 1D PSF and since the

system can be assumed to be isotropic, this airy disk can be rotated to obtain the 2D

PSF of the system.
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The assumed linear observation model of the system becomes:

g(x, y) = ĥ(x, y) ∗ f(x, y), (7.1)

where g(x, y) is the observed intensity, f(x, y) is the intensity of the underlying object,

∗ denotes the convolution operation, and ĥ(x, y) is the estimated PSF of the optical

system.

In practice, the data we collect is discretized in spatial coordinates on a uniformly-

spaced grid and Eq. 7.1 becomes:

g = Ĥf , (7.2)

where g is a vector of discretized observation data, f is the discrete underlying object

image, Ĥ is the Toeplitz matrix that implements convolution as a matrix operation

based on the estimated PSF.

7.2.2 Image reconstruction based on non-quadratic regularization

The underlying features in ICs have smooth, homogeneous and sparse structure. This

preliminary knowledge can be incorporated into the reconstruction by employing

non-quadratic regularization functionals. The image reconstruction based on non-

quadratic regularization can be formulated as the following optimization problem:

f = arg min
f
J(f), (7.3)

where

J(f) = ‖Ĥf − g‖22 + λ1‖Df‖1 + λ2‖f‖1, (7.4)

where D is the discrete approximation to the gradient operator that computes first-

order image differences in horizontal and vertical directions. The second and third

terms in Eq. 4 are regularizers that favor sparsity in the edge field of the reconstructed

image and the recovery of small scatterers, respectively. The optimization problem in
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Eq. 4 is solved using the quasi-Newton method developed in (Çetin and Karl, 2001)

and explained more detail in Chapter 4.

7.2.3 Dictionary-based image reconstruction

The structures in ICs consist of flat regions consisting of horizontal and vertical lines

of constrained and varying width and length. The width and length of these lines

are easily derivable from CAD layouts. Therefore, the application of overcomplete

dictionaries in an image reconstruction framework becomes particularly suitable for IC

imaging domain. We can construct an overcomplete dictionary from building blocks

derived from CAD layouts. These building blocks are rectangles of varying width and

length and all possible locations of these rectangles are included into the dictionary.

More detail about how to build this dictionary is explained in Section 5.1.3.

Given such a scene dictionary Φ, the unknown underlying scene f can be repre-

sented as:

f = Φη, (7.5)

where Φ is the appropriate overcomplete dictionary and η is the vector of represen-

tation coefficients. Now, we can estimate the underlying IC scene by solving the

following optimization problem:

η̂ = arg min
η
‖ĤΦη − g‖22 + λ‖η‖1, (7.6)

where λ is a regularization parameter that determines the overall level of problem

sparsity. We are using the interior point algorithm (Kim et al., 2007) in order to

solve the optimization problem. The estimated underlying scene will then be:

f̂ = Φη̂. (7.7)



166

7.3 Experimental results

(a) (b)

Figure 7·4: (a) SEM image of metal aluminum lines separated by
252nm (right) and 224nm (left), and fabricated on a double-side pol-
ished silicon wafer, (b) dark-field subsurface microscopy image.

In Fig. 7·4, the dark field subsurface microscopy image of a resolution target and

its corresponding SEM image are shown. The resolution target is composed of metal

aluminum lines separated by 252nm and 224nm, and fabricated on a double-side

polished silicon wafer. The average of cross sections from center parts of lines and

the least-squares spline approximation of this average are shown in Fig. 7·5a. The

derivative of this spline approximation gives us the estimated LSF of the system,

which is shown in Fig. 7·5b. However, since the lines are thin, at the end of the lines

we observe boundary effects and this causes errors at the waist of the LSF. Therefore,

we fit an Airy disk to this estimated LSF (Fig. 7·5b). We also note that, we make

the estimated LSF symmetric by averaging right and left sides. The estimated PSF

of the system, which is obtained by rotating this 1D Airy disk, is shown in Fig. 7·6.

The next step is to incorporate this PSF into our two image reconstruction frame-

works in order to improve the resolution and quality of the observed image. In Figs.
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Figure 7·5: (a) Average of cross sections from the center of lines and
a least-squares spline approximation to this average (b) The estimated
LSF which is the derivative of the least-squares spline approximation
and the airy disk fit to this estimated LSF

7·7, 7·8 and 7·9, we show the observation and the results of two image reconstruction

techniques for 252nm spaced vertical lines, for 224nm spaced vertical lines and for

224nm spaced horizontal lines, respectively. Both techniques appear to improve the

resolution of observation data. For the 252nm case, there are 10 lines. Though these

lines are sharper and clearer in the reconstruction results. For the 224nm case, there

are 12 lines but we cannot see them all in the observation. In the reconstruction re-

sults of the 224nm spaced vertical lines, we can clearly count 12 separate lines. This

shows that we improve not only edge resolution, but we also improve localization ac-

curacy. We can see in the SEM data that there are some fabrication imperfections in

224nm spaced horizontal lines. For this reason, we could not recover all 12 lines after

image reconstruction of 224nm spaced horizontal lines. However, the location of the

fabrication default actually corresponds to the blurred region in the dictionary-based

image reconstruction of 224nm spaced horizontal lines. One of the resolution metrics

used for IC Imaging is a Sparrow resolution criterion. The Sparrow criterion defines

the resolution as the distance between the peaks of the two point sources when the
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Figure 7·6: The estimated PSF of the system

midpoint just becomes visible. Similarly, we can evaluate if a resolution structure

is resolved or not, in other words, if a structure is localized or not, depending on

whether we observe a peak. We are able to observe exact number of peaks in lines

with 224nm spacing after resolution improvement while exact number of peaks was

observed in lines with 252nm spacing for experimental data. This shows at least 12

% resolution improvement.

7.4 Conclusions

In this chapter, we applied image reconstruction to improve the resolution of dark-

field subsurface microscopy. We applied two different sparse image reconstruction

techniques with different levels of assumed prior knowledge - an image reconstruction

based on non-quadratic regularization and a dictionary-based image reconstruction.

Both techniques provide at least 12 % resolution improvement; we are able to localize

lines with 224nm spacing after resolution improvement while lines with 252nm spacing
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Figure 7·7: 252nm spacing vertical lines: (a) observation, (b) im-
age reconstruction result based on non-quadratic regularization, (c)
dictionary-based image reconstruction result.
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Figure 7·8: 224nm spacing vertical lines: (a) observation, (b) im-
age reconstruction result based on non-quadratic regularization, (c)
dictionary-based image reconstruction result.
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Figure 7·9: 224nm spacing horizontal lines: (a) observation, (b) im-
age reconstruction result based on non-quadratic regularization, (c)
dictionary-based image reconstruction result.
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are at the limit of localization in experimental data. However, dictionary-based image

reconstruction provides higher edge resolution and maintains the homogeneity of the

intensity within the structures.
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Chapter 8

Focus determination for high NA

subsurface imaging of integrated circuits

The interface effects in high-NA focusing of linearly-polarized light has been studied

in (Koklu and Unlu, 2009) and it have been shown theoretically and experimentally

that the tightest focus on the interface happens at two different longitudinal focuses

for two orthogonal polarization directions. When the focus point is changed near

the interface along the longitudinal axis, the shape and the support of the focal

spot changes. Therefore, the observation images and their resolution also change.

Collecting data at multiple-polarization and multiple longitudinal focuses, we can

estimate the focus point of collected observation data. In this chapter, we formulate

a method in order to identify the focus point of the each data and to identify the

point of best focus. In Section 8.1, we explain the focus identification procedure and

in Section 8.2 we present preliminary experiments for focus identification.

8.1 Focus identification

Using the linear convolutional model, the observations collected at different longi-

tudinal focuses and under linearly-polarized input light with different polarization

directions can be expressed as follows:

gjz0(x, y) = hjz0(x, y) ∗ f(x, y), (8.1)
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where gjz0(x, y) is the observed intensity under linearly-polarized light at polarization

direction j and at longitudinal focus z0, f(x, y) is the intensity of the underlying

object, ∗ denotes the convolution operation, and hjz0(x, y) is the PSF of the optical

system with linearly-polarized input light of polarization direction j and focused at

longitudinal point z0.

In practice, when the data are collected, it is discretized in spatial coordinates on a

uniformly spaced grid, Eq. 8.1 can be expressed as follows;

gjz0 = Hj
z0

f , (8.2)

where gjz0 is a vector of discretized observation data under linearly-polarized light

at polarization direction j and at longitudinal focus z0, f is the discrete underlying

object image, Hj
z0

is the Toeplitz matrix that implements convolution as a matrix

operation.

Given a set of observation data collected under linearly-polarized light with different

polarization direction and at different longitudinal focuses
{
{gjz}

N
j=1

}Z
i=1

, we first need

to estimate z0 independently for each set {gjz}
N
j=1, in other words we need to register

each data set of multiple polarizations at a specific longitudinal focus to one of the

theoretically-simulated PSFs corresponding to focuses at different longitudinal points.

This can be achieved in two steps. Firstly, the underlying objects corresponding

to every simulated PSF for each data set of multiple polarizations {gjz}
N
j=1 can be

estimated by solving the following optimization problem;

∀z, z0 : f̂z,z0 = arg min
f

N∑
j=1

∣∣∣∣gjz −Hj
z0

f
∣∣∣∣2
2

+ ||f ||22 , (8.3)

where z is the label of the focus point for the experimental data.

Secondly, the estimated underlying objects will be used to calculate the data

fitting error and to register the data to the PSF which gives the least data fitting
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error through the following minimization;

∀z : ẑ0 = arg min
z0

N∑
j=1

∣∣∣∣∣∣gjz −Hj
z0

f̂z,z0

∣∣∣∣∣∣2
2
. (8.4)

In the following section, we show preliminary focus registration results on experi-

mental aSIL data.

8.2 Preliminary focus identification experiment
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Figure 8·1: Examples of experimental observation data under linearly
polarized input light with polarization in x-direction with longitudinal
focus point label: (a) 1, (b) 7, (c) 10, (d) 22, (e) 28, (f) 30.

Multiple-polarization and multiple-longitudinal focus data were collected exper-

imentally by moving a sample in longitudinal direction and illuminating it with
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Figure 8·2: Examples of experimental observation data under linearly
polarized input light with polarization in y-direction with longitudinal
focus point label: (a) 1, (b) 7, (c) 10, (d) 22, (e) 28, (f) 30.

linearly-polarized input light source in x and y polarization directions. The struc-

tures of interest, where we focus the light, are polysilicon and they are fabricated at a

silicon-silicon dioxide interface. Examples of experimental observation images under

linearly-polarized light with polarization in x-direction and y− direction are shown

in Fig. 8·1 and Fig. 8·2, respectively.

PSFs with different longitudinal focuses along the dielectric interface were sim-

ulated as explained in Section 3.2.1. The variable z0 in Eq. 2.45 determines the

longitudinal point on the sample where the light is focused. Examples of simulated

PSFs for linearly polarized input light in the x-direction are shown in Fig. 8·3.

The experimental data is registered to simulated PSFs using the procedure ex-
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plained in Section 8.1. Fig. 8·4 shows registration results computed by solving the

minimization in Eq. 8.4. The x-axis shows the label for the experimental data and

the y-axis shows the corresponding estimated longitudinal point. We expect a linear

behavior in the plot in Fig. 8·4 because the data are collected by varying the focus

equally and monotonically along the longitudinal axis. Similarly, the simulated PSFs

were calculated by changing z0 uniformly. Although there are some deviations for

certain points, the expected linear behavior can be observed.
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Figure 8·3: Examples of PSFs under linearly-polarized input light
with polarization in the x-direction with longitudinal focus point z0 =
(a) -340 µm, (b) -280 µm, (c) -240 µm, (d) -180 µm, (e) -140 µm, (f)
-100 µm, (g) -60 µm, (h) -20 µm, (i) 0 µm, (j) 15 µm, (k) 25 µm, (l)
55 µm.
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Figure 8·4: Estimated longitudinal focus point vs experimental data
z label.

8.3 Conclusion

In this chapter, we proposed a procedure for focus identification of high-NA subsurface

imaging. The procedure determines the focus of multiple-focus data by matching the

data to simulated PSFs with different longitudinal focus points near the interface

along the longitudinal axis. The results of this focus identification can also be used

in a multiple-focus, multiple-polarization image reconstruction framework. The focus

registration results of this framework can be used in a multiple-polarization multiple-

focus image reconstruction formulation in order to obtain one single image with higher

resolution.
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Chapter 9

Conclusions

9.1 Summary and conclusions

This dissertation makes contributions to the area of optical fault analysis of ICs, ad-

dressing resolution challenges that arise because of the increasing density and smaller

length scales in ICs. In particular, we formulate a sparse reconstruction framework

to improve the resolution of static IC images and dynamic optical measurements of

device activity.

In Chapter 3, we proposed two different approaches to model a PSF for the high-

NA aSIL subsurface imaging. An accurate PSF is necessary for the success of sparse

image reconstruction proposed in this thesis. Both of these PSF models use vectorial

optics to account for polarization effects in high-NA subsurface imaging. The Green’s

function approach in Section 3.2.2 extends the first approach from Section 3.2.1 in

order to provide a more accurate model suitable for a wider range of materials. It

also models the dependence of the PSF on the size of the object of interest.

In Chapter 4, we proposed a novel sparse reconstruction framework that benefits

from polarization diversity of high-NA systems. The output of this approach is a

single image, with improved resolution, obtained from a set of images collected using

linearly-polarized light with different polarization directions. The proposed frame-

work is an example of an analysis-based sparsity paradigm formulated as a linear

inverse problem enforcing sparsity through non-quadratic regularization functionals

appropriate to IC features. The advantage of this type of regularization over unreg-
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ularized reconstruction is demonstrated on simulated data. Also, benefits of sparse

reconstruction utilizing polarization diversity are shown on simulated and experimen-

tal data. Combining multiple images under input light with different polarization

directions increases the robustness of the reconstruction to noise and to mismatches

between the actual system and the assumed forward model. Additionally, Section 4.4

focused on a practical problem of boundary conditions. It presents a comparison of

different techniques for handling boundary pixels in a convolution model for an aSIL

IC imaging system. This comparison is critical for aSIL IC imaging. The PSF of the

system is fairly large compared to the size of structures in ICs, and therefore, large

errors in the reconstruction can occur due to a conventional handling of boundary

pixels. We have showed that modifying the forward model in order to remove any

assumptions on the boundary pixels produced the best performance.

In Chapter 5, we proposed a synthesis-based sparse reconstruction framework us-

ing overcomplete dictionaries to increase the resolution and localization accuracy of

IC imaging. Overcomplete dictionary-based representation is especially suitable for

IC imaging. The structures in ICs come from a limited set, mostly line segments of

varying widths and lengths. The overcomplete dictionary for the sparse representa-

tion of an IC scene was built a-priori using CAD layouts containing the design for

the device of interest. The proposed framework was validated on both simulated

data and experimental data. We also compared the performance of analysis- and

synthesis-based sparsity paradigms on both simulated data and experimental data.

The synthesis-based approach produces higher resolution and has better performance

in terms preserving the intensity smoothness within the structures and eliminating

any background oscillations. We should note that this increased performance comes

with a memory and computation time tradeoff because the dictionary-based approach

requires higher memory and higher computation time.
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In Chapter 6, an extension of the synthesis-based sparsity paradigm was formu-

lated in order to improve the resolution and localization accuracy of optical measure-

ments of device activity, specifically LVI measurements. Spatial regions of active areas

with the same signature over time or over frequency were coupled by an overcomplete

dictionary consisting of space-time or space-frequency blocks. These dictionaries were

predetermined according to the properties of modulation, which depends on the ap-

plied voltage and on the dimensions of gate, and drain regions obtained from CAD

layouts. The sparse representation increases the spatial resolution of LVI measure-

ments and enables localization of different regions with different time signatures. We

have showed that the localization error can be decreased significantly through the

sparse representation approach.

Applications of the proposed analysis- and synthesis-based sparsity paradigms to

dark-field subsurface microscopy of ICs were provided in Chapter 7. We have showed

that both techniques provide at least 12 % resolution improvement by enabling the lo-

calization of structures, which were not localized in observation data.We also proposed

a signal processing approach in order to estimate the PSF of a dark-field subsurface

microscopy system from the observation data. Finally, a focus determination proce-

dure using a stack of observation data with different longitudinal focus points was

presented in Chapter 8.

9.2 Topics for future research

Applications to high-NA systems with higher-order laser beams and apodiza-

tion

The resolution of high-NA subsurface imaging systems can be also increased through

optical microscopy techniques such as by using of higher-order laser beams for illumi-

nation and through apodization of the laser beam. A decrease in the spot size of the
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focused illumination can be achieved when the system is illuminated with radially-

polarized light where the central part is blocked. The proposed sparsity paradigms

can be also used for such systems. However, this requires the simulation of a PSF for

radially-polarized illumination. Additionally, multiple observation data with differ-

ent apodization masks can be collected and combined through sparse reconstruction

framework.

Apodization control for determining a PSF for better reconstruction per-

formance

The support of the focused light can be modified by designing phase and amplitude

masks which are placed to the back of the objective on the pupil plane. The goal

of the design is to reduce the width of the focused light in order to increase the

resolution. However, decreasing the main lobe width of the focused light can result

in an increase in the amplitude of the second lobe or in a decrease of the collection

efficiency. The design of the phase and amplitude masks can be formulated as an

optimization problem which aims at finding the optimum PSF that will produce

higher resolution in the reconstructed images while it might not improve the resolution

of observation data.

lp−regularization with p < 1 in synthesis-based sparsity paradigm for LVI

data

In Chapter 5, we showed that in synthesis-based sparsity paradigm using

lp−regularization with p < 1 is more robust than with p = 1 approach in the presence

of noise. Since LVI data are noisy, sparsity paradigm proposed in Chapter 6 for LVI

measurement should be also extended to lp−regularization with p < 1.
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Pseudo-nonlinear forward model based on overcomplete dictionaries

The forward model of high-NA microscope is a nonlinear model where images depend

on the shape and alignment of the object of interest. In this dissertation, we proposed

a PSF model in order to approximate the nonlinear forward model as a convolution

with a PSF. The reason for this is that the calculation of the full vectorial response

of the system to any random structure is computationally expensive since it requires

rigorous numerical methods. Therefore, an inverse problem formulation that uses

the full vectorial model would also be computationally expensive. It will be more

efficient, in terms of computation time, to use a pseudo-nonlinear approximation in

the reconstruction framework where a linear combination of pre-calculated nonlinear

responses of dictionary elements is used as an approximation to the forward model. In

other words, the predetermined overcomplete dictionary can be composed of nonlinear

responses of different structures in the CAD layout. Then, a sparse representation

framework can be used in order to determine the representation coefficients for scene

reconstruction.

Localization of faults in LVI measurements through synthesis-based spar-

sity paradigm

The synthesis-based sparsity paradigm proposed in Chapter 6 can be extended so

that the faults can be localized. This can be achieved by building the overcomplete

dictionary in such a way that it includes the frequency or the time signature for

expected faults. This requires a forward model for LVI measurements incorporating

the changes in modulation in the presence of expected faults.
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